Visual servoing path tracking for safe human-robot interaction

When a human is introduced into a robotic cell, the robot controller must be aware of the human location in order to assure her/his physical integrity. This paper presents a pre-collision strategy which maintains a safety distance between a robot and a human who wears a tracking system composed of a motion capture suit and a UWB localization system. The system proposed is able to guide the robot using visual servoing through a previously defined path. The time-independent behaviour of this system enables the robot to completely track the desired trajectory, even in those cases when the robot goes away from the human during the tracking to guarantee her/his safety.

[1]  Ezio Malis Visual servoing invariant to changes in camera-intrinsic parameters , 2004, IEEE Trans. Robotics Autom..

[2]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[3]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[4]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[5]  Guillaume Morel,et al.  Ensuring visibility in calibration-free path planning for image-based visual servoing , 2006, IEEE Transactions on Robotics.

[6]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[7]  Hyun Seung Yang,et al.  Motion capture-based wearable interaction system and its application to a humanoid robot, AMIO , 2007, Adv. Robotics.

[8]  Eric Foxlin,et al.  Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter , 1996, Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium.

[9]  Yoji Yamada,et al.  Human-robot contact in the safeguarding space , 1997 .

[10]  Kazuo Tanie,et al.  Collision-tolerant control of human-friendly robot with viscoelastic trunk , 1999 .

[11]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[12]  Jorge Pomares,et al.  Movement-flow-based visual servoing and force control fusion for Manipulation Tasks in unstructured environments , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[13]  Shujun Lu,et al.  Collision detection enabled weighted path planning: a wrist and base force/torque sensors approach , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[14]  Greg Welch,et al.  Motion Tracking: No Silver Bullet, but a Respectable Arsenal , 2002, IEEE Computer Graphics and Applications.

[15]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[16]  Zhiwei Luo,et al.  An immersion-type 3D dynamic simulation environment for developing human interactive robot systems , 2006, Systems and Computers in Japan.

[17]  Domenico Prattichizzo,et al.  Straight line path-planning in visual servoing , 2007 .

[18]  Xiaoming Hu,et al.  Reactive mobile manipulation using dynamic trajectory tracking , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  Fernando Torres Medina,et al.  Hybrid tracking of human operators using IMU/UWB data fusion by a Kalman filter , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[20]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[21]  Zhi-Wei Luo,et al.  An immersion-type 3D dynamic simulation environment for developing human interactive robot systems , 2006 .

[22]  Oliver Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[23]  Yeung Sam Hung,et al.  Global Path-Planning for Constrained and Optimal Visual Servoing , 2007, IEEE Transactions on Robotics.

[24]  D. Aarno,et al.  Constrained path planning and task-consistent path adaptation for mobile manipulators , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[25]  O. Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[26]  Jorge Pomares,et al.  Adaptive Visual Servoing by Simultaneous Camera Calibration , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[27]  Alexander Zelinsky,et al.  Quantitative Safety Guarantees for Physical Human-Robot Interaction , 2003, Int. J. Robotics Res..