A Trichotomy in the Complexity of Propositional Circumscription

Circumscription is one of the most important and well studied formalisms in the realm of nonmonotonic reasoning. The inference problem for propositional circumscription has been extensively studied from the viewpoint of computational complexity. We prove that there exists a trichotomy for the complexity of the inference problem in propositional variable circumscription. More specifically we prove that every restricted case of the problem is either \(\Pi_{\rm 2}^{\rm P}\)-complete, coNP-complete, or in P.

[1]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[2]  Lev A. Kalužnin,et al.  Funktionen- und Relationenalgebren mit speziellen Eigenschaften , 1979 .

[3]  Pierre Marquis,et al.  Complexity Results for Propositional Closed World Reasoning and Circumscription from Tractable Knowledge Bases , 1999, IJCAI.

[4]  Phokion G. Kolaitis,et al.  The complexity of minimal satisfiability problems , 2001, Inf. Comput..

[5]  Arnaud Durand,et al.  The Inference Problem for Propositional Circumscription of Affine Formulas Is coNP-Complete , 2003, STACS.

[6]  Lane A. Hemaspaandra SIGACT news complexity theory column 42 , 2003, SIGA.

[7]  Maurizio Lenzerini,et al.  The Complexity of Propositional Closed World Reasoning and Circumscription , 1994, J. Comput. Syst. Sci..

[8]  Gustav Nordh,et al.  An algebraic approach to the complexity of propositional circumscription , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[9]  J. McCarthy Circumscription|a Form of Nonmonotonic Reasoning , 1979 .

[10]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[11]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[12]  Maurizio Lenzerini,et al.  The Complexity of Closed World Reasoning and Circumscription , 1990, AAAI.

[13]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[14]  Phokion G. Kolaitis,et al.  A Dichotomy in the Complexity of Propositional Circumscription , 2001, Theory of Computing Systems.

[15]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[16]  Nicholas Pippenger,et al.  Theories of computability , 1997 .

[17]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[18]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[19]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[20]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.