Sparse coding of sensory inputs

[1]  Ila R Fiete,et al.  Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong. , 2004, Journal of neurophysiology.

[2]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[3]  Kim Steenstrup Pedersen,et al.  The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.

[4]  E. B. Baum,et al.  Internal representations for associative memory , 1988, Biological Cybernetics.

[5]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[6]  G. Palm,et al.  On associative memory , 2004, Biological Cybernetics.

[7]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[8]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[9]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[10]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[11]  József Fiser,et al.  Coding of Natural Scenes in Primary Visual Cortex , 2003, Neuron.

[12]  F. Theunissen From synchrony to sparseness , 2003, Trends in Neurosciences.

[13]  M. Sirota,et al.  Activity of Different Classes of Neurons of the Motor Cortex during Locomotion , 2003, The Journal of Neuroscience.

[14]  Bruno A. Olshausen,et al.  Principles of Image Representation in Visual Cortex , 2003 .

[15]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[16]  Richard Hans Robert Hahnloser,et al.  An ultra-sparse code underliesthe generation of neural sequences in a songbird , 2002, Nature.

[17]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[18]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[19]  Bruno A. Olshausen,et al.  A new window on sound , 2002, Nature Neuroscience.

[20]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[21]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[22]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[23]  B. Olshausen,et al.  news and views A new window on sound , 2002 .

[24]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  Pamela Reinagel How do visual neurons respond in the real world? , 2001, Current Opinion in Neurobiology.

[26]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[27]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[28]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[29]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[30]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[31]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[32]  Gerhard Krieger,et al.  The atoms of vision: Cartesian or polar? , 1999 .

[33]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  Peter Földiák,et al.  SPARSE CODING IN THE PRIMATE CORTEX , 2002 .

[35]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[36]  D. Ruderman,et al.  INDEPENDENT COMPONENT ANALYSIS OF NATURAL IMAGE SEQUENCES YIELDS SPATIOTEMPORAL FILTERS SIMILAR TO SIMPLE CELLS IN PRIMARY VISUAL CORTEX , 1998 .

[37]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[39]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[40]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[42]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[43]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[44]  Friedrich T. Sommer,et al.  Associative Data Storage and Retrieval in Neural Networks , 1996 .

[45]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[46]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[47]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[48]  D. Ruderman The statistics of natural images , 1994 .

[49]  Pentti Kanerva,et al.  Sparse distributed memory and related models , 1993 .

[50]  Mohamad H. Hassoun,et al.  Associative neural memories : theory and implementation , 1993 .

[51]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[52]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[53]  Luca Vogt,et al.  Models of Neural Networks I , 1991 .

[54]  G. Hartmann,et al.  Parallel Processing in Neural Systems and Computers , 1990 .

[55]  P. Best,et al.  Place cells and silent cells in the hippocampus of freely-behaving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[57]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[58]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.