A decoupled sliding mode control for a continuum arm

The paper treats the control problem of a class of robots constituted by a chain of continuum segments. The technological model basis is a central, long and thin, highly flexible and elastic backbone. The segment control system is a decoupled one. The main parameters of the arm control are determined by the curvature and curvature gradient. The dynamic model is inferred. The primary benefit of the proposed method is that the dynamic equations are represented by a set of ODE’s in time instead of PDE’s in time and space, and the new curvature gradient lumped parameter model is used. A sliding mode control system is used in order to achieve the desired shape of the arm. The stability of the closed-loop control system is proven. Numerical simulations and an experimental platform are also provided to verify the effectiveness of the presented approach.

[1]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[2]  Nabil Simaan,et al.  Kinematics-Based Detection and Localization of Contacts Along Multisegment Continuum Robots , 2012, IEEE Transactions on Robotics.

[3]  Gregory S. Chirikjian,et al.  Equilibrium Conformations of Concentric-tube Continuum Robots , 2010, Int. J. Robotics Res..

[4]  Ian D. Walker,et al.  A model-based sliding mode controller for extensible continuum robots , 2010 .

[5]  Yoji Umetani,et al.  Kinematic Control of Active Cord Mechanism with Tactile Sensors , 1976 .

[6]  Ian A. Gravagne,et al.  Uniform regulation of a multi-section continuum manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  Shigeo Hirose,et al.  Biologically Inspired Robots: Snake-Like Locomotors and Manipulators , 1993 .

[8]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[9]  Ian A. Gravagne,et al.  On the kinematics of remotely-actuated continuum robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  John Kenneth Salisbury,et al.  Mechanics Modeling of Tendon-Driven Continuum Manipulators , 2008, IEEE Transactions on Robotics.

[11]  Ian D. Walker,et al.  Practical Kinematics for Real-Time Implementation of Continuum Robots , 2006, IEEE Transactions on Robotics.

[12]  Nirvana Popescu,et al.  A Spatial Weight Error Control for a Class of Hyper-Redundant Robots , 2013, IEEE Transactions on Robotics.

[13]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Pinhas Ben-Tzvi,et al.  Continuum Robot Dynamics Utilizing the Principle of Virtual Power , 2014, IEEE Transactions on Robotics.

[15]  Jing Xiao,et al.  Determining “grasping” configurations for a spatial continuum manipulator , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Ian D. Walker,et al.  Manipulability and force ellipsoids for continuum robot manipulators , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[18]  D. Caleb Rucker,et al.  A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots , 2010, IEEE Transactions on Robotics.

[19]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[20]  Ian D. Walker,et al.  Real-time shape estimation for continuum robots using vision , 2005, Robotica.

[21]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[22]  Maarouf Saad,et al.  Workspace tracking trajectory for 7-DOF ANAT robot using a hierarchical control strategy , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[23]  Shugen Ma,et al.  Influence of the gradient of a slope on optimal locomotion curves of a snake-like robot , 2006, Adv. Robotics.

[24]  Nirvana Popescu,et al.  Frequency criteria for the grasping control of a hyper-redundant robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[25]  Hiromi Mochiyama,et al.  The shape Jacobian of a manipulator with hyper degrees of freedom , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[26]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[27]  Farbod Fahimi,et al.  An improved inverse kinematic and velocity solution for spatial hyper-redundant robots , 2002, IEEE Trans. Robotics Autom..

[28]  Yacine Amirat,et al.  Modeling and Control of a Continuum Style Microrobot for Endovascular Surgery , 2011, IEEE Transactions on Robotics.

[29]  Dimitris P. Tsakiris,et al.  Polychaete-Like Undulatory Robotic Locomotion in Unstructured Substrates , 2007, IEEE Transactions on Robotics.

[30]  D. Cojocaru,et al.  Control of a hyper-redundant robot , 2010, 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010).

[31]  D. Caleb Rucker,et al.  Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading , 2011, IEEE Transactions on Robotics.

[32]  J. F. Forbes,et al.  Feedback control of hyperbolic distributed parameter systems , 2005 .

[33]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[34]  Michael C. Yip,et al.  Model-Less Feedback Control of Continuum Manipulators in Constrained Environments , 2014, IEEE Transactions on Robotics.

[35]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[36]  Ian D. Walker,et al.  A novel 'elephant's trunk' robot , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[37]  Florentin Wörgötter,et al.  A Novel Concept for Building a Hyper-Redundant Chain Robot , 2009, IEEE Transactions on Robotics.