Inverted pendulum with moving reference for benchmarking control systems performance

This paper presents inverted pendulum with moving reference for the testing of stabilizing control algorithms. The proposed system extends classical inverted pendulum by incorporating two moving masses. The motion of the two masses, that slide along the horizontal plane, is controllable for the purpose of platform stabilization. The usefulness of the idea presented is demonstrated using computer simulations by employing Proportional Integral Derivative (PID) control law.

[1]  P. Larcombe On the control of a two-dimensional multi-link inverted pendulum: the form of the dynamic equations from choice of co-ordinate system , 1992 .

[2]  S. Kajita,et al.  Experimental study of biped dynamic walking , 1996 .

[3]  Katsuhisa Furuta,et al.  Swing up control of inverted pendulum , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[4]  Ronald M. Hirschorn,et al.  Control of nonlinear systems with friction , 1999, IEEE Trans. Control. Syst. Technol..

[5]  Chung Choo Chung,et al.  Nonlinear control of a swinging pendulum , 1995, Autom..

[6]  T. Sadeghi,et al.  Computer-aided control system analysis and design using interactive computer graphics , 1982, IEEE Control Systems Magazine.

[7]  Katsuhisa Furuta,et al.  Control of unstable mechanical system Control of pendulum , 1976 .

[8]  James B. Dabney,et al.  A spherical pendulum system to teach key concepts in kinematics, dynamics, control, and simulation , 1999 .

[9]  C.W. Anderson,et al.  Learning to control an inverted pendulum using neural networks , 1989, IEEE Control Systems Magazine.

[10]  G.-W. van der Linden,et al.  H/sub ∞/ control of an experimental inverted pendulum with dry friction , 1993, IEEE Control Systems.

[11]  Mark W. Spong,et al.  The swing up control problem for the Acrobot , 1995 .

[12]  P. Apkarian,et al.  LPV techniques for control of an inverted pendulum , 1999, IEEE Control Systems.

[13]  T. Yamakawa Fuzzy logic hardware systems , 1989, Symposium 1989 on VLSI Circuits.

[14]  P. Lewis Innovative control systems laboratory equipment , 1982, IEEE Control Systems Magazine.

[15]  Roger W. Brockett,et al.  A light weight rotary double pendulum: maximizing the domain of attraction , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  H. Hemami,et al.  An approach to analyzing biped locomotion dynamics and designing robot locomotion controls , 1977 .

[17]  G. A. Medrano-Cersa Robust computer control of an inverted pendulum , 1999 .

[18]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[19]  K. Diehl,et al.  An interactive control systems simulator , 1986, IEEE Control Systems Magazine.

[20]  Hooshang Hemami,et al.  Some aspects of the inverted pendulum problem for modeling of locomotion systems , 1973 .

[21]  Alfred C. Rufer,et al.  JOE: a mobile, inverted pendulum , 2002, IEEE Trans. Ind. Electron..