The LIBI Grid Platform for Bioinformatics

The LIBI project (International Laboratory of BioInformatics), which started in 2005 and will end in 2009, was initiated with the aim of setting up an advanced bioinformatics and computational biology laboratory, focusing on basic and applied research in modern biology and biotechnologies. One of the goals of this project has been the development of a Grid Problem Solving Environment, built on top of EGEE, DEISA and SPACI infrastructures, to allow the submission and monitoring of jobs mapped to complex experiments in bioinformatics. In this work we describe the architecture of this environment and describe several case studies and related results which have been obtained using it.

[1]  Christine A. Orengo,et al.  Towards a comprehensive structural coverage of completed genomes: a structural genomics viewpoint , 2007, BMC Bioinformatics.

[2]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[3]  E. Gallopoulos,et al.  Problem-solving Environments For Computational Science , 1997, IEEE Computational Science and Engineering.

[4]  Gregor von Laszewski,et al.  Designing Grid-based problem solving environments and portals , 2001, Proceedings of the 34th Annual Hawaii International Conference on System Sciences.

[5]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[6]  P. Murphy,et al.  Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation , 2000, Molecular and Cellular Endocrinology.

[7]  Thure Etzold,et al.  SRS: An Integration Platform for Databanks and Analysis Tools in Bioinformatics , 2003, Bioinformatics.

[8]  Garland R. Marshall,et al.  Properties of intraglobular contacts in proteins: an approach to prediction of tertiary structure , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[9]  Maria Mirto,et al.  ProGenGrid: A Grid-Enabled Platform for Bioinformatics , 2005, HealthGrid.

[10]  Á. Juhász,et al.  Role of mobile introns in mitochondrial genome diversity of fungi (a mini review). , 2002, Acta microbiologica et immunologica Hungarica.

[11]  Graziano Pesole,et al.  CSTminer: a web tool for the identification of coding and noncoding conserved sequence tags through cross-species genome comparison , 2004, Nucleic Acids Res..

[12]  R Henrik Nilsson,et al.  Automated phylogenetic taxonomy: an example in the homobasidiomycetes (mushroom-forming fungi). , 2005, Systematic biology.

[13]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[14]  Giacinto Donvito,et al.  Recent evolutions of GridICE: a monitoring tool for grid systems , 2007, GMW '07.

[15]  S Brunak,et al.  Protein structures from distance inequalities. , 1993, Journal of molecular biology.

[16]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[17]  Pierre Baldi,et al.  Modular DAG-RNN Architectures for Assembling Coarse Protein Structures , 2006, J. Comput. Biol..

[18]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[19]  Piero Fariselli,et al.  Reconstruction of 3D Structures From Protein Contact Maps , 2008, IEEE ACM Trans. Comput. Biol. Bioinform..

[20]  Arthur M. Lesk,et al.  Introduction to bioinformatics , 2002 .

[21]  Maria Mirto,et al.  The grid relational catalog project , 2004, High Performance Computing Workshop.

[22]  Graziano Pesole,et al.  PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences , 2003, Nucleic Acids Res..

[23]  M. Boguski,et al.  dbEST — database for “expressed sequence tags” , 1993, Nature Genetics.

[24]  Jos Houbraken,et al.  Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case , 2007, Proceedings of the National Academy of Sciences.

[25]  David A. Lee,et al.  Predicting protein function from sequence and structure , 2007, Nature Reviews Molecular Cell Biology.

[26]  Gianluigi Zanetti,et al.  AntiHunter 2.0: increased speed and sensitivity in searching BLAST output for EST antisense transcripts , 2005, Nucleic Acids Res..

[27]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[28]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  Italo Epicoco,et al.  The Grid Resource Broker workflow engine , 2008 .

[30]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[31]  Gunjan Gupta,et al.  Developing Web Services for C and C++ , 2003, IEEE Internet Comput..

[32]  E. Wagner,et al.  Antisense RNAs in bacteria and their genetic elements. , 2002, Advances in genetics.

[33]  Ben Lehner,et al.  In search of antisense. , 2004, Trends in biochemical sciences.

[34]  Piero Fariselli,et al.  Fault Tolerance for Large Scale Protein 3D Reconstruction from Contact Maps , 2007, WABI.

[35]  Graziano Pesole,et al.  UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs , 2004, Nucleic Acids Res..

[36]  Sandhya Dwarkadas,et al.  Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference , 2002, Bioinform..

[37]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[38]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[39]  M. Vassura,et al.  Reconstruction of 3D Structures From Protein Contact Maps , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[40]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[41]  M Vendruscolo,et al.  Recovery of protein structure from contact maps. , 1997, Folding & design.

[42]  Massimo Cafaro,et al.  Secure Web Services with Globus GSI and gSOAP , 2003, Euro-Par.

[43]  Izabela Makalowska,et al.  FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium , 2004, European Journal of Plant Pathology.

[44]  Timothy F. Havel Distance Geometry: Theory, Algorithms, and Chemical Applications , 2002 .