A functional and perceptual signature of the second visual area in primates

There is no generally accepted account of the function of the second visual cortical area (V2), partly because no simple response properties robustly distinguish V2 neurons from those in primary visual cortex (V1). We constructed synthetic stimuli replicating the higher-order statistical dependencies found in natural texture images and used them to stimulate macaque V1 and V2 neurons. Most V2 cells responded more vigorously to these textures than to control stimuli lacking naturalistic structure; V1 cells did not. Functional magnetic resonance imaging (fMRI) measurements in humans revealed differences between V1 and V2 that paralleled the neuronal measurements. The ability of human observers to detect naturalistic structure in different types of texture was well predicted by the strength of neuronal and fMRI responses in V2 but not in V1. Together, these results reveal a particular functional role for V2 in the representation of natural image structure.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  J. Malpeli,et al.  The effect of striate cortex cooling on area 18 cells in the monkey , 1977, Brain Research.

[3]  A. P. Dawid,et al.  Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm , 1979 .

[4]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[5]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Ogawa Brain magnetic resonance imaging with contrast-dependent oxygenation , 1990 .

[9]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[10]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[12]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[14]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[15]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[16]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[17]  D H Foster,et al.  Human Sensitivity to Phase Perturbations in Natural Images: A Statistical Framework , 2000, Perception.

[18]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[19]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[20]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[21]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[24]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[25]  Edward H. Adelson,et al.  On seeing stuff: the perception of materials by humans and machines , 2001, IS&T/SPIE Electronic Imaging.

[26]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[27]  R. L. de Valois,et al.  Cartesian and non-Cartesian responses in LGN, V1, and V2 cells , 2001, Visual Neuroscience.

[28]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[29]  James M. Hillis,et al.  Combining Sensory Information: Mandatory Fusion Within, but Not Between, Senses , 2002, Science.

[30]  A. Parker,et al.  A specialization for relative disparity in V2 , 2002, Nature Neuroscience.

[31]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[32]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[33]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[34]  Gidon Felsen,et al.  A natural approach to studying vision , 2005, Nature Neuroscience.

[35]  Feng Qi Han,et al.  Cortical Sensitivity to Visual Features in Natural Scenes , 2005, PLoS biology.

[36]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[37]  Nicole C. Rust,et al.  In praise of artifice , 2005, Nature Neuroscience.

[38]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[39]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[40]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[41]  D. C. Essen,et al.  Neurons in monkey visual area V2 encode combinations of orientations , 2007, Nature Neuroscience.

[42]  R. von der Heydt,et al.  A neural model of figure-ground organization. , 2007, Journal of neurophysiology.

[43]  F. Qiu,et al.  Figure-ground mechanisms provide structure for selective attention , 2007, Nature Neuroscience.

[44]  U. Grömping Estimators of Relative Importance in Linear Regression Based on Variance Decomposition , 2007 .

[45]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[46]  Benjamin J. Balas,et al.  Attentive texture similarity as a categorization task: Comparing texture synthesis models , 2008, Pattern Recognit..

[47]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[48]  Movshon J. Anthony Visual response properties of V1 neurons projecting to V2 in macaque , 2009 .

[49]  D. Kersten,et al.  Border Ownership Selectivity in Human Early Visual Cortex and its Modulation by Attention , 2009, The Journal of Neuroscience.

[50]  Michael S. Lewicki,et al.  Emergence of complex cell properties by learning to generalize in natural scenes , 2009, Nature.

[51]  B. Willmore,et al.  Neural Representation of Natural Images in Visual Area V2 , 2010, The Journal of Neuroscience.

[52]  Panagiotis G. Ipeirotis,et al.  Running Experiments on Amazon Mechanical Turk , 2010, Judgment and Decision Making.

[53]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[54]  Eero P. Simoncelli,et al.  Article Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis , 2022 .

[55]  J. Anthony Movshon,et al.  Neuronal Responses to Texture-Defined Form in Macaque Visual Area V2 , 2011, The Journal of Neuroscience.

[56]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[57]  Eero P. Simoncelli,et al.  Efficient and direct estimation of a neural subunit model for sensory coding , 2012, NIPS.

[58]  Lindsey L. Glickfeld,et al.  Cortico-cortical projections in mouse visual cortex are functionally target specific , 2013, Nature Neuroscience.

[59]  D. S. M A X W E L L,et al.  B Y H E a V Y I O N I Z I N G P a R T I C L E S , 2022 .