Position feedback global tracking control of EL systems: a state transformation approach

The contribution of this paper is a dynamic position feedback global tracking controller for fully actuated Euler-Lagrange (EL) systems. The properties we show for the closed loop system are uniform stability and exponential convergence, global in the initial tracking errors and semiglobal in the initial estimation errors. The novelty of our approach is that our observer and control design are based on a new model for EL systems which is linear in the immeasurable velocities. This model is shown to fit robot manipulators. We also provide some simulation results.

[1]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[2]  P. Kokotovic,et al.  Global output tracking control of a class of Euler-Lagrange systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  Antonio Loría,et al.  A separation principle for dynamic positioning of ships: theoretical and experimental results , 2000, IEEE Trans. Control. Syst. Technol..

[4]  Gildas Besancon,et al.  Simple Global Output Feedback Tracking Control for One-Degree-of-Freedom Euler-Lagrange Systems , 1998 .

[5]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[6]  Elena Panteley,et al.  A separation principle for a class of euler-lagrange systems , 1999 .

[7]  Mark W. Spong Remarks on robot dynamics: canonical transformations and Riemannian geometry , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[8]  J. Wen,et al.  New class of control laws for robotic manipulators Part 1. Non–adaptive case , 1988 .

[9]  Warren E. Dixon,et al.  Global adaptive output feedback tracking control of robot manipulators , 2000, IEEE Trans. Autom. Control..

[10]  E. Panteley,et al.  On global uniform asymptotic stability of nonlinear time-varying systems in cascade , 1998 .

[11]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[12]  P. R. Bélanger,et al.  Estimation of Angular Velocity and Acceleration from Shaft-Encoder Measurements , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[13]  Fernando Reyes-Cortés,et al.  Experimental Evaluation of Identification Schemes on a Direct Drive Robot , 1997, Robotica.

[14]  Ilya V. Burkov,et al.  Mechanical System Stabilization via Differential Observer , 1995 .

[15]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[16]  Gildas Besancon,et al.  Global output feedback tracking control for a class of Lagrangian systems , 2000, Autom..

[17]  John T. Wen,et al.  New class of control laws for robotic manipulators. I - Nonadaptive case. II - Adaptive case , 1988 .

[18]  Thor I. Fossen,et al.  Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping , 1998, IEEE Trans. Control. Syst. Technol..

[19]  Antonio Loría,et al.  Global Tracking Control of One Degree of Freedom Euler-Lagrange Systems without Velocity Measurements , 1996, Eur. J. Control.

[20]  Leonardo Lanari,et al.  STATE TRANSFORMATION AND GLOBAL OUTPUT FEEDBACK DISTURBANCE ATTENUATION FOR A CLASS OF MECHANICAL SYSTEMS , 1999 .