Cluster and Feature Modeling from Combinatorial Stochastic Processes
暂无分享,去创建一个
[1] B. De Finetti,et al. Funzione caratteristica di un fenomeno aleatorio , 1929 .
[2] G. Pólya,et al. Sur quelques points de la théorie des probabilités , 1930 .
[3] L. J. Savage,et al. Symmetric measures on Cartesian products , 1955 .
[4] T. Teichmann,et al. Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.
[5] D. Freedman. Bernard Friedman's Urn , 1965 .
[6] J. McCloskey,et al. A model for the distribution of individuals by species in an environment , 1965 .
[7] J. Kingman,et al. Completely random measures. , 1967 .
[8] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[9] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[10] J. Kingman. The Representation of Partition Structures , 1978 .
[11] L. Rogers,et al. Diffusions, Markov processes, and martingales , 1979 .
[12] F. Hoppe. Pólya-like urns and the Ewens' sampling formula , 1984 .
[13] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[14] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .
[15] D. Aldous. Exchangeability and related topics , 1985 .
[16] N. Hjort. Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .
[17] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[18] M. Escobar. Estimating Normal Means with a Dirichlet Process Prior , 1994 .
[19] S. MacEachern. Estimating normal means with a conjugate style dirichlet process prior , 1994 .
[20] J. Pitman. Exchangeable and partially exchangeable random partitions , 1995 .
[21] J. Pitman. Some developments of the Blackwell-MacQueen urn scheme , 1996 .
[22] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[23] S. Taylor,et al. LÉVY PROCESSES (Cambridge Tracts in Mathematics 121) , 1998 .
[24] Yongdai Kim. NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .
[25] J. Bertoin. Subordinators: Examples and Applications , 1999 .
[26] J. Pitman,et al. Prediction rules for exchangeable sequences related to species sampling ( , 2000 .
[27] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[28] Jean Bertoin,et al. Subordinators, Lévy processes with no negative jumps, and branching processes , 2000 .
[29] R. Wolpert. Lévy Processes , 2000 .
[30] M. Escobar,et al. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[31] H. Ishwaran,et al. Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .
[32] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[33] J. Pitman. Poisson-Kingman partitions , 2002, math/0210396.
[34] J. Pitman,et al. Exchangeable Gibbs partitions and Stirling triangles , 2004, math/0412494.
[35] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[36] Reflecting uncertainty in inverse problems: a Bayesian solution using Lévy processes , 2004 .
[37] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[38] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[39] Wei Li,et al. Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.
[40] Michael I. Jordan,et al. Variational inference for Dirichlet process mixtures , 2006 .
[41] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..
[42] G. Roberts,et al. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.
[43] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[44] S. MacEachern,et al. Bayesian Density Estimation and Inference Using Mixtures , 2007 .
[45] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[46] P. McCullagh,et al. Gibbs fragmentation trees , 2007, 0704.0945.
[47] D. Dunson,et al. Kernel stick-breaking processes. , 2008, Biometrika.
[48] Lawrence Carin,et al. A Stick-Breaking Construction of the Beta Process , 2010, ICML.
[49] Thomas L. Griffiths,et al. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.
[50] Peter I. Frazier,et al. Distance dependent Chinese restaurant processes , 2009, ICML.
[51] Michael I. Jordan,et al. Tree-Structured Stick Breaking for Hierarchical Data , 2010, NIPS.
[52] M. R. Leadbetter. Poisson Processes , 2011, International Encyclopedia of Statistical Science.
[53] Michael I. Jordan,et al. Beta Processes, Stick-Breaking and Power Laws , 2011, 1106.0539.
[54] Thomas L. Griffiths,et al. The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..
[55] David B. Dunson,et al. Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.
[56] Michael I. Jordan,et al. Feature allocations, probability functions, and paintboxes , 2013, 1301.6647.
[57] P. Müller,et al. Defining Predictive Probability Functions for Species Sampling Models. , 2013, Statistical science : a review journal of the Institute of Mathematical Statistics.
[58] Michael I. Jordan,et al. Combinatorial Clustering and the Beta Negative Binomial Process , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.