Chapter 10 – Cross-Subject Comparison of Local Diffusion MRI Parameters

There has been much interest in using magnetic resonance diffusion imaging to provide information about anatomical connectivity in the brain by measuring the anisotropic diffusion of water in white matter tracts. One of the measures most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies how strongly directional the local tract structure is. Many imaging studies are starting to use FA images (and other diffusion-derived parameters) in voxelwise statistical analyses, in order to localize brain changes related to development, degeneration, and disease. However, in order to compare such local changes in diffusion parameters across subjects, it is necessary to solve the “correspondence problem,” to determine which location in each subject’s diffusion images corresponds to the equivalent anatomical location in the other subjects. Some researchers have used generic registration methods to try to achieve correspondence, some have used region-of-interest approaches, some have used tractography to parameterize diffusion parameters according to anatomical location, and some have combined different aspects of all of these approaches to attempt to achieve robust and accurate correspondence. This chapter describes many such approaches in the literature, discusses the potential richness available when using more diffusion-derived information than purely the FA, and also illustrates some of the dangers that the researcher should be aware of when interpreting the analysis of multi-subject diffusion MRI studies.

[1]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[2]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[3]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[4]  R. Kikinis,et al.  Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study , 2003, Biological Psychiatry.

[5]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[6]  Thomas E. Nichols,et al.  Nonstationary cluster-size inference with random field and permutation methods , 2004, NeuroImage.

[7]  M A Horsfield,et al.  Diffusion tensor MRI assesses corticospinal tract damage in ALS , 1999, Neurology.

[8]  Moo K. Chung,et al.  A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis , 2009, NeuroImage.

[9]  E. Oja,et al.  Independent Component Analysis , 2013 .

[10]  M. Moseley Diffusion tensor imaging and aging – a review , 2002, NMR in biomedicine.

[11]  Martin Styner,et al.  FADTTS: Functional analysis of diffusion tensor tract statistics , 2011, NeuroImage.

[12]  J. Helpern,et al.  Neuropsychiatric applications of DTI – a review , 2002, NMR in biomedicine.

[13]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[14]  G. Comi,et al.  Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. , 2001, AJNR. American journal of neuroradiology.

[15]  M. Symms,et al.  Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. , 2001, Brain : a journal of neurology.

[16]  C. Büchel,et al.  Disconnection of speech-relevant brain areas in persistent developmental stuttering , 2022 .

[17]  S Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[18]  G J Barker,et al.  Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. , 2001, Brain : a journal of neurology.

[19]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[20]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[21]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[22]  Martin Styner,et al.  FRATS: Functional Regression Analysis of DTI Tract Statistics , 2010, IEEE Transactions on Medical Imaging.

[23]  Thomas E. Nichols,et al.  Adjusting the effect of nonstationarity in cluster-based and TFCE inference , 2011, NeuroImage.

[24]  N. Intrator,et al.  Free water elimination and mapping from diffusion MRI , 2009, Magnetic resonance in medicine.

[25]  Mark W. Woolrich,et al.  Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure , 2012, NeuroImage.

[26]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[27]  C. Büchel,et al.  White matter asymmetry in the human brain: a diffusion tensor MRI study. , 2004, Cerebral cortex.

[28]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[29]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[30]  Carl-Fredrik Westin,et al.  Sampling and Visualizing Creases with Scale-Space Particles , 2009, IEEE Transactions on Visualization and Computer Graphics.

[31]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[32]  V. Menon,et al.  White matter tract alterations in fragile X syndrome: Preliminary evidence from diffusion tensor imaging , 2003, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[33]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[34]  Jean-Francois Mangin,et al.  Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas , 2012, NeuroImage.

[35]  Carl-Fredrik Westin,et al.  White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study , 2004, NeuroImage.

[36]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[37]  Derek K. Jones,et al.  How and how not to correct for CSF-contamination in diffusion MRI , 2012, NeuroImage.

[38]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[39]  Maxime Descoteaux,et al.  Robust clustering of massive tractography datasets , 2011, NeuroImage.

[40]  Alain Trouvé,et al.  Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents , 2011, NeuroImage.

[41]  Derek K. Jones,et al.  Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia , 2006, Human brain mapping.

[42]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[43]  David H. Eberly,et al.  Ridges for image analysis , 1994, Journal of Mathematical Imaging and Vision.

[44]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[45]  D. Salat,et al.  Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Carl-Fredrik Westin,et al.  Spatial normalization of diffusion tensor MRI using multiple channels , 2003, NeuroImage.

[48]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[49]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.

[50]  P. Hüppi,et al.  Diffusion tensor imaging of normal and injured developing human brain ‐ a technical review , 2002, NMR in biomedicine.

[51]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[52]  Timothy Edward John Behrens,et al.  Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis , 2007, NeuroImage.

[53]  James C. Gee,et al.  Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study , 2005, NeuroImage.

[54]  David H. Eberly,et al.  Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.

[55]  Stephen T. C. Wong,et al.  A hybrid approach to automatic clustering of white matter fibers , 2010, NeuroImage.

[56]  Mark W. Woolrich,et al.  Linked independent component analysis for multimodal data fusion , 2011, NeuroImage.

[57]  B. Everitt,et al.  Mixture model mapping of brain activation in functional magnetic resonance images , 1999, Human brain mapping.

[58]  Daniel B Ennis,et al.  Visualization of tensor fields using superquadric glyphs , 2005, Magnetic resonance in medicine.

[59]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[60]  Pratik Mukherjee,et al.  Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain , 2012, Human brain mapping.

[61]  Timothy Edward John Behrens,et al.  Investigation of white matter pathology in ALS and PLS using tract‐based spatial statistics , 2009, Human brain mapping.

[62]  Stephen Smith,et al.  Schizophrenia delays and alters maturation of the brain in adolescence. , 2009, Brain : a journal of neurology.

[63]  Carl-Fredrik Westin,et al.  Tract-based morphometry for white matter group analysis , 2009, NeuroImage.

[64]  M. Filippi,et al.  Inter-sequence and inter-imaging unit variability of diffusion tensor MR imaging histogram-derived metrics of the brain in healthy volunteers. , 2003, AJNR. American journal of neuroradiology.

[65]  Carl-Fredrik Westin,et al.  Delineating white matter structure in diffusion tensor MRI with anisotropy creases , 2007, Medical Image Anal..

[66]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[67]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[68]  Fei Wang,et al.  Asymmetry analysis of cingulum based on scale‐invariant parameterization by diffusion tensor imaging , 2005, Human brain mapping.

[69]  Karl J. Friston,et al.  Voxel-Based Morphometry , 2015 .

[70]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[71]  Carl-Fredrik Westin,et al.  Diffusion Tensor Analysis With Invariant Gradients and Rotation Tangents , 2007, IEEE Transactions on Medical Imaging.

[72]  Stephen M. Smith,et al.  Crossing fibres in tract-based spatial statistics , 2010, NeuroImage.

[73]  G. Kindlmann,et al.  Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images , 2006, Magnetic resonance in medicine.

[74]  Guido Gerig,et al.  Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. , 2006, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention.

[75]  Suyash P. Awate,et al.  A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features , 2010, Medical Image Anal..

[76]  K. Amunts,et al.  Towards multimodal atlases of the human brain , 2006, Nature Reviews Neuroscience.

[77]  Paul A. Yushkevich,et al.  Structure-specific statistical mapping of white matter tracts , 2007, NeuroImage.

[78]  Maria Assunta Rocca,et al.  A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis , 2005, NeuroImage.

[79]  Lennart Heimer,et al.  Neuroanatomical tract-tracing 3 : molecules, neurons, and systems , 2006 .

[80]  John H. Gilmore,et al.  Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building , 2006, MICCAI.

[81]  Timothy Edward John Behrens,et al.  Between session reproducibility and between subject variability of diffusion MR and tractography measures , 2006, NeuroImage.

[82]  Stefan Skare,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Extensive Blockinpiano Blockinpracticing Blockinhas Blockinregionally Specific Blockineffects Blockinon Blockinwhite Blockinmatter Blockindevelopment , 2022 .

[83]  Thomas E. Nichols,et al.  Acquisition and voxelwise analysis of multi-subject diffusion data with Tract-Based Spatial Statistics , 2007, Nature Protocols.

[84]  Karl J. Friston,et al.  Generative and recognition models for neuroanatomy , 2004, NeuroImage.

[85]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[86]  Christos Davatzikos,et al.  Why voxel-based morphometric analysis should be used with great caution when characterizing group differences , 2004, NeuroImage.

[87]  Hong Sun,et al.  Quantitative analysis along the pyramidal tract by length-normalized parameterization based on diffusion tensor tractography: Application to patients with relapsing neuromyelitis optica , 2006, NeuroImage.

[88]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[89]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[90]  Derek K Jones,et al.  Applications of diffusion‐weighted and diffusion tensor MRI to white matter diseases – a review , 2002, NMR in biomedicine.

[91]  Tipu Z. Aziz,et al.  Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner , 2011, NeuroImage.