Adaptation and Neuronal Network in Visual Cortex

Complex mechanisms from retina to different visual areas allow us to read these lines. The visual system is inevitable for the way we interact with our surroundings as majority of our impressions, memories, feelings are bound to the visual perception. Millions of cortical neurons are implicated and programmed specifically to frame this incredible interface (perception) for us to interact with the world. Neurons in the visual cortex respond essentially to the variations in luminance occurring within their receptive fields, where each neuron fires maximally by acting as a filter for stimulus features such as orientation, motion, direction and velocity, with an appropriate combination of these properties [1-5].

[1]  U Yinon,et al.  Auditory activation of cortical visual areas in cats after early visual deprivation , 1999, The European journal of neuroscience.

[2]  Christof Koch,et al.  Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. , 2011, Journal of neurophysiology.

[3]  E. Quinlan,et al.  Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex , 2006, The Journal of Neuroscience.

[4]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[5]  S. Molotchnikoff,et al.  Adaptation-induced plasticity and spike waveforms in cat visual cortex , 2012, Neuroreport.

[6]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[7]  H Sompolinsky,et al.  Global processing of visual stimuli in a neural network of coupled oscillators. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Murray Sherman,et al.  Morphology of physiologically identified neurons in the visual cortex of the cat , 1979, Brain Research.

[9]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[10]  Stéphane Molotchnikoff,et al.  Adaptive behavior of neighboring neurons during adaptation-induced plasticity of orientation tuning in V1 , 2009, BMC Neuroscience.

[11]  D. Buonomano,et al.  Cortical plasticity: from synapses to maps. , 1998, Annual review of neuroscience.

[12]  David A Lewis,et al.  Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[13]  G. Orban,et al.  Illusory contour orientation discrimination in the cat , 1990, Behavioural Brain Research.

[14]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[15]  G. Mower,et al.  Role of visual experience in activating critical period in cat visual cortex. , 1985, Journal of Neurophysiology.

[16]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[17]  Morgane M. Roth,et al.  Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex , 2011, Front. Neural Circuits.

[18]  S. Molotchnikoff,et al.  Contextual modulation of synchronization to random dots in the cat visual cortex , 2004, Experimental Brain Research.

[19]  S. V. Hooser Similarity and Diversity in Visual Cortex: Is There a Unifying Theory of Cortical Computation? , 2007 .

[20]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[21]  S. Sherman,et al.  Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. , 1976, Journal of neurophysiology.

[22]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[23]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[24]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[25]  Ari Rosenberg,et al.  Models and measurements of functional maps in V1. , 2008, Journal of neurophysiology.

[26]  C. Schauf,et al.  Movement phosphenes in optic neuritis , 1976, Neurology.

[27]  Matteo Carandini,et al.  Contrast invariance of functional maps in cat primary visual cortex. , 2004, Journal of vision.

[28]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[29]  N. Daw,et al.  Critical period for monocular deprivation in the cat visual cortex. , 1992, Journal of neurophysiology.

[30]  Stephen D. Van Hooser Similarity and Diversity in Visual Cortex: Is There a Unifying Theory of Cortical Computation? , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[31]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[32]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[33]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[34]  Randolph Blake,et al.  Cats see subjective contours , 1988, Vision Research.

[35]  M. Bear,et al.  Instructive Effect of Visual Experience in Mouse Visual Cortex , 2006, Neuron.

[36]  Valentin Dragoi,et al.  Adaptive coding of visual information in neural populations , 2008, Nature.

[37]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[38]  R. Reid,et al.  Specificity and randomness: structure–function relationships in neural circuits , 2011, Current Opinion in Neurobiology.

[39]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[40]  Michael P Stryker,et al.  Cortical Plasticity Induced by Inhibitory Neuron Transplantation , 2010, Science.

[41]  S. Molotchnikoff,et al.  Repetitive adaptation induces plasticity of spatial frequency tuning in cat primary visual cortex , 2011, Neuroscience.

[42]  K. Alloway,et al.  Conditional cross-correlation analysis of thalamocortical neurotransmission , 2002, Behavioural Brain Research.

[43]  A. Peters Identified neurons in visual cortex , 1984, Trends in Neurosciences.

[44]  Florence Duret,et al.  Neuron participation in a synchrony-encoding assembly , 2006, BMC Neuroscience.

[45]  Shigeru Tanaka,et al.  A Postnatal Critical Period for Orientation Plasticity in the Cat Visual Cortex , 2009, PloS one.

[46]  P. O. Bishop,et al.  Striate neurons: receptive field concepts. , 1972, Investigative ophthalmology.

[47]  M. C. Angulo,et al.  Distinct local circuits between neocortical pyramidal cells and fast-spiking interneurons in young adult rats. , 2003, Journal of neurophysiology.

[48]  H. Tamura,et al.  Horizontal interactions between visual cortical neurones studied by cross‐correlation analysis in the cat. , 1991, The Journal of physiology.

[49]  Damian J. Wallace,et al.  Chasing the cell assembly , 2010, Current Opinion in Neurobiology.

[50]  M. Goodale,et al.  The visual brain in action , 1995 .

[51]  D. Hubel,et al.  RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. , 1963, Journal of neurophysiology.

[52]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[53]  P. König,et al.  Correlated firing in sensory-motor systems , 1995, Current Opinion in Neurobiology.

[54]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[56]  P S Goldman-Rakic,et al.  Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[58]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[59]  J. Lund,et al.  Anatomical comparison of the macaque and marsupial visual cortex: Common features that may reflect retention of essential cortical elements , 1998, The Journal of comparative neurology.

[60]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[61]  Stephane Molotchnikoff,et al.  Visual Cells Remember Earlier Applied Target: Plasticity of Orientation Selectivity , 2008, PloS one.

[62]  W. Singer,et al.  Neuronal assemblies: necessity, signature and detectability , 1997, Trends in Cognitive Sciences.

[63]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[64]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[65]  A. Cowey,et al.  Cortical area V4 and its role in the perception of color , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  D. C. Essen,et al.  Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[68]  D. Hubel,et al.  Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique , 1977, Nature.

[69]  J. Movshon The velocity tuning of single units in cat striate cortex. , 1975, The Journal of physiology.

[70]  J. Horton,et al.  Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys , 1996, The Journal of Neuroscience.

[71]  Wolf Singer,et al.  Dynamic Formation of Functional Networks by Synchronization , 2011, Neuron.

[72]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[73]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[74]  Stephane Molotchnikoff,et al.  Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex , 2008, BMC Neuroscience.

[75]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[76]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[77]  A. Zaitsev,et al.  Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. , 2006, Cerebral cortex.

[78]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[79]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[80]  P. O. Bishop,et al.  Responses to moving slits by single units in cat striate cortex , 2004, Experimental Brain Research.

[81]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[82]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[83]  C. Gilbert,et al.  Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex , 1995, Nature.

[84]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[85]  D. Georgescauld Local Cortical Circuits, An Electrophysiological Study , 1983 .

[86]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[87]  Y Watanabe,et al.  Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex , 2000, The Journal of Neuroscience.

[88]  S. Molotchnikoff,et al.  Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex , 2009, Neuroscience.

[89]  A. Schleicher,et al.  Cytoarchitectonic mapping of the human dorsal extrastriate cortex , 2012, Brain Structure and Function.

[90]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.