Interconnection and damping assignment passivity-based control for a compass-like biped robot

A novel procedure for designing an interconnection and damping assignment passivity-based control to perform different walking gaits of a compass-like biped robot is presented. The interconnection and damping assignment passivity-based control method is often used to achieve asymptotic stability of the closed-loop desired equilibrium point in underactuated systems. Nevertheless, in this article, for the first time, this method is used to shape the kinetic energy of the robot and thus perform different gaits by modifying its limit cycle. One degree of underactuation of the compass-like biped robot is considered, and a suitable change of coordinates is made in order to design the proposed control law. The effectiveness of this controller and some advantages with respect to another similar approach are shown through a deep numerical simulation study.

[1]  Alessandro Astolfi,et al.  Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one , 2004, Proceedings of the 2004 American Control Conference.

[2]  Víctor Santibáñez,et al.  Evaluación experimental del caminado en tiempo real de un robot bípedo de 5 g.d.l. con marcha basada en movimientos cicloidales , 2015 .

[3]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[4]  Rogelio Soto,et al.  Balance control of a biped robot in the coronal plane using foot sole CoP trajectories , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[5]  Francesco Bullo,et al.  Controlled symmetries and passive walking , 2005, IEEE Transactions on Automatic Control.

[6]  Mark W. Spong,et al.  Kinetic energy shaping for gait regulation of underactuated bipeds , 2008, 2008 IEEE International Conference on Control Applications.

[7]  Takeo Kanade,et al.  Locomotion among dynamic obstacles for the honda ASIMO , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Tristan Perez,et al.  Regulation and integral control of an underactuated robotic system using IDA-PBC with dynamic extension , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[9]  Y. Hayakawa,et al.  Control two-link flexible manipulators using controlled Lagrangian method , 2004, SICE 2004 Annual Conference.

[10]  Javier Moreno-Valenzuela,et al.  A procedure to find equivalences among dynamic models of planar biped robots , 2017, Simul. Model. Pract. Theory.

[11]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..

[12]  Faruk Kazi,et al.  Dynamics and control of 2D SpiderCrane: A controlled Lagrangian approach , 2010, 49th IEEE Conference on Decision and Control (CDC).

[13]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[14]  Martin Velasco-Villa,et al.  Análisis del deslizamiento en el punto de apoyo de un robot bípedo de 5-gdl , 2013 .

[15]  Benoit Thuilot,et al.  Compass-Like Biped Robot Part I : Stability and Bifurcation of Passive Gaits , 1996 .

[16]  Yue Wang,et al.  Energy based control of compass gait soft limbed bipeds , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[18]  Ricardo Campa,et al.  Control Basado en IDA-PBC del Péndulo con Rueda Inercial: Análisis en Formulación Lagrangiana , 2005 .

[19]  Dongjun Lee,et al.  Time-Scaling Trajectories of Passive-Dynamic Bipedal Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[20]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity--Based Control of the Pendubot , 2008 .

[21]  Dongjun Lee,et al.  Passivity-Based Control of Bipedal Locomotion , 2007, IEEE Robotics & Automation Magazine.

[22]  Atsuo Kawamura,et al.  Energy and torque efficient ZMP-based bipedal walking with varying center of mass height , 2010, 2010 11th IEEE International Workshop on Advanced Motion Control (AMC).

[23]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.