Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation

Abstract This paper presents the design of a state observer which guarantees quadratic boundedness of the estimation error. By using quadratic Lyapunov stability analysis, the convergence rate and the ultimate (steady-state) error bounding ellipsoid are identified as the parameters that define the behaviour of the estimation. Then, it is shown that these objectives can be merged in a scalarised objective function with one design parameter, making the design problem convex. In the second part of the article, a UAV model is presented which can be made linear by considering a particular state and frame of reference. The UAV model is extended to incorporate a disturbance model of variable size. The joint model matches the structure required to derive an observer, following the lines of the proposed design approach. An observer for disturbances acting on the UAV is derived and the analysis of the performances with respect to the design parameters is presented. The effectiveness and main characteristics of the proposed approach are shown using simulation results.

[1]  Angelo Alessandri,et al.  Design of time-varying state observers for nonlinear systems by using input-to-state stability , 2013, 2013 American Control Conference.

[2]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[3]  Mingxing Fang,et al.  Improving Disturbance-Rejection Performance Based on an Equivalent-Input-Disturbance Approach , 2008, IEEE Transactions on Industrial Electronics.

[4]  Juan Andrade-Cetto,et al.  High-frequency MAV state estimation using low-cost inertial and optical flow measurement units , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  Damiano Rotondo,et al.  Fault estimation of wind turbines using combined adaptive and parameter estimation schemes , 2018 .

[6]  C. D. Johnson,et al.  Accomodation of external disturbances in linear regulator and servomechanism problems , 1971 .

[7]  B. Ding New formulation of dynamic output feedback robust model predictive control with guaranteed quadratic boundedness , 2011, Proceedings of the 30th Chinese Control Conference.

[8]  Kyung-Soo Kim,et al.  Disturbance Observer for Estimating Higher Order Disturbances in Time Series Expansion , 2010, IEEE Transactions on Automatic Control.

[9]  Marcin Witczak,et al.  Predictive actuator fault-tolerant control under ellipsoidal bounding , 2016 .

[10]  A. Alessandri Observer design for nonlinear systems by using Input-to-State Stability , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[11]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[12]  Shao-Yuan Li,et al.  Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form , 2011, J. Frankl. Inst..

[13]  Housheng Su,et al.  Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations , 2012 .

[14]  Heinz Unbehauen,et al.  Robust Hinfinity observer design of linear state delayed systems with parametric uncertainty: the discrete-time case , 1999, Autom..

[15]  Jianbin Qiu,et al.  Unknown Input Observer Design for Interval Type-2 T-S Fuzzy Systems With Immeasurable Premise Variables , 2017, IEEE Trans. Cybern..

[16]  Federico Thomas,et al.  An ellipsoidal calculus based on propagation and fusion , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Vincenzo Lippiello,et al.  Impedance control of VToL UAVs with a momentum-based external generalized forces estimator , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18]  P. Kaboré,et al.  Disturbance attenuation using proportional integral observers , 2001 .

[19]  RotondoDamiano,et al.  Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems , 2016 .

[20]  Roland Siegwart,et al.  A robust and modular multi-sensor fusion approach applied to MAV navigation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Lei Guo,et al.  Disturbance-Observer-Based Control and Related Methods—An Overview , 2016, IEEE Transactions on Industrial Electronics.

[22]  Hamid Reza Karimi,et al.  Robust Observer Design for Unknown Inputs Takagi–Sugeno Models , 2013, IEEE Transactions on Fuzzy Systems.

[23]  Vincenzo Lippiello,et al.  Passivity-based control of VToL UAVs with a momentum-based estimator of external wrench and unmodeled dynamics , 2015, Robotics Auton. Syst..

[24]  Baocang Ding,et al.  Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance , 2016, Int. J. Control.

[25]  M. Corless,et al.  Quadratic boundedness of nominally linear systems , 1998 .

[26]  Giorgio Battistelli,et al.  Design of state estimators for uncertain linear systems using quadratic boundedness , 2006, Autom..

[27]  Xubin Ping,et al.  Output Feedback Robust MPC Based on Off‐line Observer for LPV Systems via Quadratic Boundedness , 2017 .

[28]  Jun Yang,et al.  Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties , 2012, IEEE Transactions on Industrial Electronics.

[29]  Jinya Su,et al.  High order disturbance observer design for linear and nonlinear systems , 2015, 2015 IEEE International Conference on Information and Automation.

[30]  Didier Theilliol,et al.  A quadratic boundedness approach to robust DC motor fault estimation , 2017 .

[31]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[32]  Sanjay E. Talole,et al.  Performance Analysis of Generalized Extended State Observer in Tackling Sinusoidal Disturbances , 2013, IEEE Transactions on Control Systems Technology.

[33]  Xiaobing Kong,et al.  State Estimators for Uncertain Linear Systems with Different Disturbance/Noise Using Quadratic Boundedness , 2012, J. Appl. Math..

[34]  Damiano Rotondo,et al.  A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems , 2017 .

[35]  Antonio Franchi,et al.  A nonlinear force observer for quadrotors and application to physical interactive tasks , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[36]  Wan Kyun Chung,et al.  A discrete-time design and analysis of perturbation observer for motion control applications , 2003, IEEE Trans. Control. Syst. Technol..

[37]  Masoud Abbaszadeh,et al.  LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete‐time nonlinear uncertain systems , 2009 .

[38]  Gaurav S. Sukhatme,et al.  Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration , 2011, Int. J. Robotics Res..

[40]  M. Corless,et al.  Quadratic boundedness of nonlinear dynamical systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[41]  Damiano Rotondo,et al.  Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems , 2016, Int. J. Syst. Sci..

[42]  Giorgio Battistelli,et al.  On estimation error bounds for receding-horizon filters using quadratic boundedness , 2004, IEEE Transactions on Automatic Control.

[43]  Mohammed Chadli,et al.  Fuzzy Fault Detection Filter Design for T–S Fuzzy Systems in the Finite-Frequency Domain , 2017, IEEE Transactions on Fuzzy Systems.

[44]  Tor Arne Johansen,et al.  Observers for interconnected nonlinear and linear systems , 2012, Autom..

[45]  Damien Koenig,et al.  Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation , 2005, IEEE Transactions on Automatic Control.

[46]  Baocang Ding Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi-Sugeno's form , 2009, Autom..