Visual-inertial odometry system with simultaneous extrinsic parameters optimization

For visual-inertial odometry in a robotic system, the performance of the resultant localization can be improved with effective initialization. In this paper, an initialization pattern is proposed based on the monocular visual-inertial system, which can optimize extrinsic parameters between the camera and the inertial measurement unit simultaneously. Firstly, rotation extrinsic, gyroscope bias, metric scale, and gravity vector are estimated by visual-inertial information. Then, the translation extrinsic parameters are optimized in visual-inertial alignment stage and the velocity is calculated via previous state estimation. Since accelerometer bias has little effect with respect to initialization when the rotation angle is not large enough, it is not estimated in the initialization stage and is handled in the following stages. The performance of the proposed method is validated by comparative experimental results.

[1]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Hujun Bao,et al.  Robust Keyframe-Based Monocular SLAM for Augmented Reality , 2016, 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct).

[3]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[4]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[6]  Guoquan Huang,et al.  Visual-Inertial Navigation: A Concise Review , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[7]  R. Siegwart,et al.  Camera/IMU Calibration Revisited , 2017, IEEE Sensors Journal.

[8]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[9]  Shaojie Shen,et al.  Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration , 2017, IEEE Transactions on Automation Science and Engineering.

[10]  Roland Siegwart,et al.  Keyframe-based Visual-Inertial SLAM using Nonlinear Optimization , 2013, RSS 2013.

[11]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[12]  Flavio Fontana,et al.  Simultaneous State Initialization and Gyroscope Bias Calibration in Visual Inertial Aided Navigation , 2017, IEEE Robotics and Automation Letters.

[13]  Hong Liu,et al.  Online Initialization and Automatic Camera-IMU Extrinsic Calibration for Monocular Visual-Inertial SLAM , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Rong Xiong,et al.  Stereo Visual-Inertial Odometry With Multiple Kalman Filters Ensemble , 2016, IEEE Transactions on Industrial Electronics.

[15]  Gaurav S. Sukhatme,et al.  Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration , 2011, Int. J. Robotics Res..

[16]  Jörg Stückler,et al.  The TUM VI Benchmark for Evaluating Visual-Inertial Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[17]  José Ruíz Ascencio,et al.  Visual simultaneous localization and mapping: a survey , 2012, Artificial Intelligence Review.

[18]  Vijay Kumar,et al.  Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[20]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.