RELIABLE ON-LINE KINETICS IDENTIFICATION FOR A SEMI-BATCH PROCESS BY PARALLEL USE OF SHORT-CUT TRANSFER OF INFORMATION RULE AND RECURSIVE ESTIMATORS

Abstract On-line concentration measurements from an isothermal semi-batch system, i.e. the liquidphase acetoacetylation of pyrrole with diketene, are used for identification of a kinetic model. An integrated expert system, containing coupled estimation procedures and statistical analysis tools as well as a kinetic model data bank, chooses the most suitable structure for the kinetic model and subsequently identifies model parameters. With the increased availability of data during the run, refinements or structural changes in the kinetic model are performed automatically and parameter estimates are updated. A recently developed short-cut procedure (the Modified Integral transformation Procedure, MIP, Maria and Rippin, 1995, 1996; Maria, 1995), is compared against classical direct methods. Interactive use of a kinetic model-data bank through a numerical transfer of information strategy allows adaption of the mechanism-based kinetic model structure. Multiple nonlinear state estimators of the Extended Kalman F...

[1]  Gheorghe Maria,et al.  Modified Integral Procedure (MIP) as a reliable short-cut method in mechanistic based ODE kinetic model estimation : Non-isothermal and (semi-)batch process cases , 1995 .

[2]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[3]  William S. Peters,et al.  Principal Components and Factor Analysis , 1987 .

[4]  L. Hosten,et al.  A comparative study of short cut procedures for parameter estimation in differential equations , 1979 .

[5]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[6]  G. Froment,et al.  Catalytic Kinetics: Modelling , 1982 .

[7]  Dominique Bonvin,et al.  Target factor analysis for the identification of stoichiometric models , 1990 .

[8]  Gheorghe Maria,et al.  A modified matyas algorithm (MMA) for random process optimization , 1986 .

[9]  C. R. Jones,et al.  Determination of Rate Constants for Complex Kinetics Models , 1967 .

[10]  Mukul Agarwal,et al.  Batch unit optimization with imperfect modelling: a survey , 1994 .

[11]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[12]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[13]  G. Maria An adaptive strategy for solving kinetic model concomitant estimation — Reduction problems , 1989 .

[14]  Gheorghe Maria,et al.  An adaptive parameter estimation used to obtain reduced kinetic models for the biological treatment process , 1989 .

[15]  Jacques Villermaux,et al.  Batch reactor optimization by use of tendency models , 1989 .

[16]  G. Maria Expert system for ode chemical kinetic model identification by using a transfer of information numerical strategy , 1993 .

[17]  O. Prinz,et al.  MONITORING DISCONTINUOUS REACTORS USING FACTOR-ANALYTICAL TECHNIQUES , 1992 .

[18]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[19]  Gheorghe Maria,et al.  Note concerning two tecniques for complex kinetic pathway analysis , 1993 .

[20]  Dominique Bonvin,et al.  Application of Factor Analysis to the Resolution of Biochemical Reaction Networks , 1993 .

[21]  Jacques Villermaux,et al.  Tendency modeling of semibatch reactors for optimization and control , 1986 .

[22]  Peter P. Valko,et al.  A direct-indirect procedure for estimation of kinetic parameters , 1986 .

[23]  D. Ruppen,et al.  On-line Estimation and Optimization of an Experimental Semi-batch Reaction System , 1992 .

[24]  Douglas M. Bates,et al.  Multiresponse Estimation With Special Application to Linear Systems of Differential Equations , 1985 .

[25]  R. Luus,et al.  Simplification of quasilinearization method for parameter estimation , 1983 .

[26]  L. R. Williams,et al.  Reaction calorimetry : a powerful tool , 1991 .

[27]  Gheorghe Maria,et al.  MODEL REDUCTION AND KINETIC PARAMETERS IDENTIFICATION FOR THE METHANOL CONVERSION TO OLEFINS , 1987 .

[28]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[29]  D. Bonvin,et al.  Application of estimation techniques to batch reactors—III. Modelling refinements which improve the quality of state and parameter estimation , 1990 .

[30]  David W.T. Rippin,et al.  Recursive robust kinetics estimation by using a mechanistic short-cut technique and a pattern-recognition procedure , 1996 .