The complexity of the outer face in arrangements of random segments

We investigate the complexity of the outer face in arrangements of line segments of a fixed length in the plane, drawn uniformly at random within a square. We derive upper bounds on the expected complexity of the outer face, and establish a certain phase transition phenomenon during which the expected complexity of the outer face drops sharply as a function of the total number of segments. In particular we show that up till the phase transition the complexity of the outer face is almost linear in n, and that after the phase transition, the complexity of the outer face is roughly proportional to pn. Our study is motivated by the analysis of a practical point-location algorithm (so-called walk-along-a-line point-location algorithm) and indeed, it explains experimental observations of the behavior of the algorithm on arrangements of random segments.

[1]  Luc Devroye,et al.  A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.

[2]  Dan Halperin,et al.  An Experimental Study of Point Location in General Planar Arrangements , 2006, ALENEX.

[3]  Ketan Mulmuley A Fast Planar Partition Algorithm, I , 1990, J. Symb. Comput..

[4]  Olivier Devillers,et al.  The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..

[5]  Raimund Seidel,et al.  A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons , 1991, Comput. Geom..

[6]  Godfried T. Toussaint,et al.  Convex Hulls for Random Lines , 1993, J. Algorithms.

[7]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[8]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[9]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[10]  Richard Cole,et al.  Searching and Storing Similar Lists , 2018, J. Algorithms.

[11]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[12]  Stefan Langerman,et al.  The Convex Hull for Random Lines in the Plane , 2002, JCDCG.

[13]  Leonidas J. Guibas,et al.  A hierarchical method for real-time distance computation among moving convex bodies , 2000, Comput. Geom..

[14]  Jean-Daniel Boissonnat,et al.  Effective computational geometry for curves and surfaces , 2006 .

[15]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[16]  Dan Halperin,et al.  Advanced programming techniques applied to Cgal's arrangement package , 2007, Comput. Geom..

[17]  Iddo Hanniel,et al.  The Design and Implementation of Planar Maps in CGAL , 1999, WAE.

[18]  Raimund Seidel Reprint of: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons , 2010, Comput. Geom..

[19]  Olivier Devillers,et al.  Walking in a triangulation , 2001, SCG '01.

[20]  Prosenjit Bose,et al.  On the stabbing number of a random Delaunay triangulation , 2007, Comput. Geom..

[21]  Luc Devroye,et al.  Expected time analysis for Delaunay point location , 2004, Comput. Geom..

[22]  Iddo Hanniel,et al.  The design and implementation of panar maps in CGAL , 2000, JEAL.

[23]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[24]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[25]  Prosenjit Bose,et al.  Intersections with random geometric objects , 1998, Comput. Geom..