A Map for Horizontal Disparity in Monkey V2

The perception of visual depth is determined by integration of spatial disparities of inputs from the two eyes. Single cells in visual cortex of monkeys are known to respond to specific binocular disparities; however, little is known about their functional organization. We now show, using intrinsic signal optical imaging and single-unit physiology, that, in the thick stripe compartments of the second visual area (V2), there is a clustered organization of Near cells and Far cells, and moreover, there are topographic maps for Near to Far disparities within V2. Our findings suggest that maps for visual disparity are calculated in V2, and demonstrate parallels in functional organization between the thin, pale, and thick stripes of V2.

[1]  Youping Xiao,et al.  V2 thin stripes contain spatially organized representations of achromatic luminance change. , 2007, Cerebral cortex.

[2]  D. L. Adams,et al.  Functional organization of macaque V3 for stereoscopic depth. , 2001, Journal of neurophysiology.

[3]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[4]  Xiangmin Xu,et al.  Optical imaging of visually evoked responses in prosimian primates reveals conserved features of the middle temporal visual area. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Michael Kühl,et al.  An unexpected specialization for horizontal disparity in primate primary visual cortex , 2022 .

[6]  Gyula Sáry,et al.  Functional Organization of Visual Cortex in the Owl Monkey , 2004, The Journal of Neuroscience.

[7]  N. Swindale,et al.  How different feature spaces may be represented in cortical maps , 2004, Network.

[8]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[9]  C. Hung,et al.  Real and illusory contour processing in area V1 of the primate: a cortical balancing act. , 2001, Cerebral cortex.

[10]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[11]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[13]  A. Parker,et al.  A specialization for relative disparity in V2 , 2002, Nature Neuroscience.

[14]  Charles E Connor,et al.  Quantitative characterization of disparity tuning in ventral pathway area V4. , 2005, Journal of neurophysiology.

[15]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[16]  A. Parker,et al.  Binocular Neurons in V1 of Awake Monkeys Are Selective for Absolute, Not Relative, Disparity , 1999, The Journal of Neuroscience.

[17]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[18]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[20]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[22]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[23]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[24]  B. Cumming,et al.  Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons , 2007, Nature Neuroscience.

[25]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[26]  Anna Wang Roe,et al.  Optical imaging of functional organization of V1 and V2 in marmoset visual cortex. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[27]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[28]  J. Baizer,et al.  Visual responses of area 18 neurons in awake, behaving monkey. , 1977, Journal of neurophysiology.

[29]  J. R.,et al.  Quantitative analysis , 1892, Nature.

[30]  Anna W. Roe,et al.  Modular Complexity of Area V2 in the Macaque Monkey , 2003 .

[31]  B. Cumming,et al.  Macaque V2 Neurons, But Not V1 Neurons, Show Choice-Related Activity , 2006, The Journal of Neuroscience.

[32]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[33]  Ichiro Fujita,et al.  Disparity-selective neurons in area V4 of macaque monkeys. , 2002 .

[34]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[35]  R Perez,et al.  Neural mechanisms underlying stereoscopic vision , 1998, Progress in Neurobiology.

[36]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[37]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[38]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[39]  A. Parker,et al.  Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. , 2002, Journal of neurophysiology.

[40]  S. Ullman,et al.  Retinotopic Axis Specificity and Selective Clustering of Feedback Projections from V2 to V1 in the Owl Monkey , 2005, The Journal of Neuroscience.

[41]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[43]  C. Hung,et al.  Cortical processing of a brightness illusion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[45]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[46]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[47]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[48]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[49]  Gregory C DeAngelis,et al.  Coding of horizontal disparity and velocity by MT neurons in the alert macaque. , 2003, Journal of neurophysiology.

[50]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[51]  I. Ohzawa,et al.  The binocular organization of simple cells in the cat's visual cortex. , 1986, Journal of neurophysiology.

[52]  J. Kaas,et al.  The Primate visual system , 2003 .

[53]  R. Born,et al.  Integrating motion and depth via parallel pathways , 2008, Nature Neuroscience.

[54]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[55]  I. Ohzawa,et al.  Neural mechanisms for encoding binocular disparity: receptive field position versus phase. , 1999, Journal of neurophysiology.

[56]  Charles D. Gilbert,et al.  A hierarchy of the functional organization for color, form and disparity in primate visual area V2 , 2001, Vision Research.

[57]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[58]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.