On Computing the Critical Coupling Coefficient for the Kuramoto Model on a Complete Bipartite Graph

We extend recent results on the existence of global phase-locked states (GPLS) in the Kuramoto model on a complete graph to the case of a complete bipartite graph. In particular, we prove that, for the Kuramoto model on a complete bipartite graph, the value of the critical coupling coefficient, i.e., the smallest coupling coefficient for which a GPLS can exist, can be determined by solving a system of two nonlinear equations that do not depend on the coupling coefficient itself. We show that said system of equations can be solved using an efficient algorithm described in the paper.

[1]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[2]  Edward Ott,et al.  Synchronization in large directed networks of coupled phase oscillators. , 2005, Chaos.

[3]  Sara J. Aton,et al.  Come Together, Right…Now: Synchronization of Rhythms in a Mammalian Circadian Clock , 2005, Neuron.

[4]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion With Limited Communication , 2008, IEEE Transactions on Automatic Control.

[5]  J. Jalife,et al.  Mechanisms of Sinoatrial Pacemaker Synchronization: A New Hypothesis , 1987, Circulation research.

[6]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[7]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[9]  Alain Sarlette,et al.  Synchronization and balancing on the N-torus , 2007, Syst. Control. Lett..

[10]  Güler Ergün Human sexual contact network as a bipartite graph , 2001 .

[11]  S. Yamaguchi,et al.  Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus , 2003, Science.

[12]  J. Kurths,et al.  Synchronization in Oscillatory Networks , 2007 .

[13]  D. Aeyels,et al.  Stability of phase locking in a ring of unidirectionally coupled oscillators , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[14]  Naomi Ehrich Leonard,et al.  SPATIAL PATTERNS IN THE DYNAMICS OF ENGINEERED AND BIOLOGICAL NETWORKS , 2007 .

[15]  Oliver Mason,et al.  Global Phase-Locking in Finite Populations of Phase-Coupled Oscillators , 2007, SIAM J. Appl. Dyn. Syst..

[16]  Anne Beuter,et al.  Nonlinear dynamics in physiology and medicine , 2003 .

[17]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[18]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[19]  R. Sepulchre,et al.  Oscillator Models and Collective Motion , 2007, IEEE Control Systems.

[20]  M. Golubitsky,et al.  The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space , 2002 .

[21]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[22]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[23]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[24]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[25]  Tony Kontzer,et al.  Come together , 2002 .

[26]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[27]  Dirk Aeyels,et al.  Existence of Partial Entrainment and Stability of Phase Locking Behavior of Coupled Oscillators , 2004 .

[28]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[29]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[30]  Peter A. Tass,et al.  Desynchronization and chaos in the kuramoto model , 2005 .

[31]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[32]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[33]  Robert Gentleman,et al.  Graphs in molecular biology , 2007, BMC Bioinformatics.

[34]  Peter A. Tass,et al.  Desynchronization of brain rhythms with soft phase-resetting techniques , 2002, Biological Cybernetics.

[35]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.

[36]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[37]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[38]  Peter A Tass,et al.  Phase chaos in coupled oscillators. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[40]  Steven H. Strogatz,et al.  The Spectrum of the Partially Locked State for the Kuramoto Model , 2007, J. Nonlinear Sci..

[41]  W. Singer,et al.  Synchronization of Neural Activity across Cortical Areas Correlates with Conscious Perception , 2007, The Journal of Neuroscience.

[42]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .

[43]  Naomi Ehrich Leonard,et al.  Group Coordination and Cooperative Control of Steered Particles in the Plane , 2006 .

[44]  P. Tass,et al.  Mechanism of desynchronization in the finite-dimensional Kuramoto model. , 2004, Physical review letters.

[45]  Mark W. Spong,et al.  On Exponential Synchronization of Kuramoto Oscillators , 2009, IEEE Transactions on Automatic Control.

[46]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[47]  Dirk Aeyels,et al.  Partial entrainment in the finite Kuramoto-Sakaguchi model , 2007 .

[48]  Edward Ott,et al.  Emergence of coherence in complex networks of heterogeneous dynamical systems. , 2006, Physical review letters.

[49]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[50]  Jianhong Shen,et al.  Cucker–Smale Flocking under Hierarchical Leadership , 2006, q-bio/0610048.

[51]  M. A. Henson,et al.  A molecular model for intercellular synchronization in the mammalian circadian clock. , 2007, Biophysical journal.

[52]  S. Strogatz,et al.  The spectrum of the locked state for the Kuramoto model of coupled oscillators , 2005 .

[53]  Peter A. Tass,et al.  Chaotic Attractor in the Kuramoto Model , 2005, Int. J. Bifurc. Chaos.

[54]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[55]  Rodolphe Sepulchre,et al.  Oscillators as Systems and Synchrony as a Design Principle , 2006 .