Eurographics Symposium on Rendering (2007) Efficient Basis Decomposition for Scattered Reflectance Data

Recent progress in acquisition technology has increased the availability and quality of measured appearance data. Although representations based on dimensionality reduction provide the greatest fidelity to measured data, they require assembling a high-resolution and regularly sampled matrix from sparse and non-uniformly scattered input. Constructing and processing this immense matrix becomes a significant computational bottleneck. We describe a technique for performing basis decomposition directly from scattered measurements. Our approach is flexible in how the basis is represented and can accommodate any number of linear constraints on the factorization. Because its time- and space-complexity is proportional to the number of input measurements and the size of the output, we are able to decompose multi-gigabyte datasets faster and at lower error rates than currently available techniques. We evaluate our approach by representing measured spatially-varying reflectance within a reduced linear basis defined over radial basis functions and a database of measured BRDFs.

[1]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, SIGGRAPH 2006.

[2]  Anselmo Lastra,et al.  A generalized surface appearance representation for computer graphics , 2002 .

[3]  Wojciech Matusik,et al.  Efficient Isotropic BRDF Measurement , 2003, Rendering Techniques.

[4]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[5]  Ralf Sarlette,et al.  Acquisition, Synthesis, and Rendering of Bidirectional Texture Functions , 2005, Comput. Graph. Forum.

[6]  Katsushi Ikeuchi,et al.  Appearance Based Object Modeling using Texture Database: Acquisition Compression and Rendering , 2002, Rendering Techniques.

[7]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[8]  Hans-Peter Seidel,et al.  Image-Based Reconstruction of Spatially Varying Materials , 2001 .

[9]  Ravi Ramamoorthi,et al.  Reflectance sharing: image-based rendering from a sparse set of images , 2005, EGSR '05.

[10]  S. Marschner,et al.  Measuring and modeling the appearance of finished wood , 2005, SIGGRAPH 2005.

[11]  Andrew Gardner,et al.  Linear light source reflectometry , 2003, ACM Trans. Graph..

[12]  Steven M. Seitz,et al.  Shape and Spatially-Varying BRDFs from Photometric Stereo , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  K. Torrance,et al.  Off-Specular Peaks in the Directional Distribution of Reflected Thermal Radiation , 1966 .

[14]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[15]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[16]  Stephen H. Westin,et al.  Measuring and modeling the appearance of finished wood , 2005, ACM Trans. Graph..

[17]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[18]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  Pieter Peers,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, ACM Trans. Graph..

[20]  Hans-Peter Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[21]  Demetri Terzopoulos,et al.  TensorTextures: multilinear image-based rendering , 2004, ACM Trans. Graph..

[22]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[23]  MalikJitendra,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001 .

[24]  Shree K. Nayar,et al.  Time-varying surface appearance: acquisition, modeling and rendering , 2006, ACM Trans. Graph..

[25]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[26]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[27]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[28]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[29]  Andrea J. van Doorn,et al.  Bidirectional Reflection Distribution Function Expressed in Terms of Surface Scattering Modes , 1996, ECCV.

[30]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[31]  Ravi Ramamoorthi,et al.  Reflectance sharing: predicting appearance from a sparse set of images of a known shape , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Shree K. Nayar,et al.  Time-varying surface appearance , 2006, SIGGRAPH 2006.

[33]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[34]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[35]  H. Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[36]  Hans-Peter Seidel,et al.  Image-based reconstruction of spatial appearance and geometric detail , 2003, TOGS.

[37]  Norimichi Tsumura,et al.  Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin , 2003, ACM Trans. Graph..

[38]  Wei-Chao Chen,et al.  Light field mapping: efficient representation and hardware rendering of surface light fields , 2002, SIGGRAPH.

[39]  M. Alex O. Vasilescu,et al.  TensorTextures: multilinear image-based rendering , 2004, SIGGRAPH 2004.

[40]  Iain S. Duff,et al.  MA27 -- A set of Fortran subroutines for solving sparse symmetric sets of linear equations , 1982 .

[41]  Shree K. Nayar,et al.  Generalization of Lambert's reflectance model , 1994, SIGGRAPH.

[42]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[43]  Karl vom Berge,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, SIGGRAPH 2006.

[44]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, ACM Trans. Graph..