Meaningful silences: how dopamine listens to the ACh pause

[1]  A. Barbeau The pathogenesis of Parkinson's disease: a new hypothesis. , 1962, Canadian Medical Association journal.

[2]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[5]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  A. Graybiel,et al.  Temporal and spatial characteristics of tonically active neurons of the primate's striatum. , 1995, Journal of neurophysiology.

[7]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[8]  E. Vaadia,et al.  Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. , 1996, Journal of neurophysiology.

[9]  John T. Williams,et al.  Nicotine activates and desensitizes midbrain dopamine neurons , 1997, Nature.

[10]  J. Changeux,et al.  Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine , 1998, Nature.

[11]  P. Calabresi,et al.  Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses , 1998 .

[12]  K. Berridge,et al.  What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? , 1998, Brain Research Reviews.

[13]  P. Garris,et al.  Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation , 1999, Nature.

[14]  P. Calabresi,et al.  Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP , 1999, Neuropharmacology.

[15]  C. I. Connolly,et al.  Building neural representations of habits. , 1999, Science.

[16]  Charles J. Wilson,et al.  Spontaneous Activity of Neostriatal Cholinergic Interneurons In Vitro , 1999, The Journal of Neuroscience.

[17]  A. Graybiel,et al.  Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. , 1999, Journal of neurophysiology.

[18]  F. Zhou,et al.  Nicotinic acetylcholine receptor-mediated synaptic potentials in rat neocortex , 2000, Brain Research.

[19]  L. Descarries,et al.  Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. , 2000, Progress in brain research.

[20]  P. Calabresi,et al.  Acetylcholine-mediated modulation of striatal function , 2000, Trends in Neurosciences.

[21]  J. Wickens,et al.  Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo , 2000, Neuroscience.

[22]  D. Ji,et al.  Synaptic Plasticity and Nicotine Addiction , 2001, Neuron.

[23]  J. Wickens,et al.  Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. , 2001, Journal of neurophysiology.

[24]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[25]  Michele Zoli,et al.  Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei , 2001, The Journal of Neuroscience.

[26]  J. Bolam,et al.  Presynaptic localisation of the nicotinic acetylcholine receptor β2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones , 2001, The Journal of comparative neurology.

[27]  O. Hikosaka,et al.  Role of Tonically Active Neurons in Primate Caudate in Reward-Oriented Saccadic Eye Movement , 2001, The Journal of Neuroscience.

[28]  John A. Dani,et al.  Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum , 2001, Nature Neuroscience.

[29]  P. Apicella,et al.  Reward Unpredictability inside and outside of a Task Context as a Determinant of the Responses of Tonically Active Neurons in the Monkey Striatum , 2001, The Journal of Neuroscience.

[30]  B. Hyland,et al.  Firing modes of midbrain dopamine cells in the freely moving rat , 2002, Neuroscience.

[31]  Charles J. Wilson,et al.  Cholinergic interneuron characteristics and nicotinic properties in the striatum. , 2002, Journal of neurobiology.

[32]  B. Knowlton,et al.  Learning and memory functions of the Basal Ganglia. , 2002, Annual review of neuroscience.

[33]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[34]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[35]  J. Partridge,et al.  Nicotinic Acetylcholine Receptors Interact with Dopamine in Induction of Striatal Long-Term Depression , 2002, The Journal of Neuroscience.

[36]  R. Lester,et al.  Desensitization of neuronal nicotinic receptors. , 2002, Journal of neurobiology.

[37]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[38]  H. Mansvelder,et al.  Synaptic Mechanisms Underlie Nicotine-Induced Excitability of Brain Reward Areas , 2002, Neuron.

[39]  R. Wise Brain Reward Circuitry Insights from Unsensed Incentives , 2002, Neuron.

[40]  M. Zoli,et al.  Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum , 2002, The Journal of Neuroscience.

[41]  Sabrina Ravel,et al.  Responses of Tonically Active Neurons in the Monkey Striatum Discriminate between Motivationally Opposing Stimuli , 2003, The Journal of Neuroscience.

[42]  W. Schultz,et al.  Coding of Predicted Reward Omission by Dopamine Neurons in a Conditioned Inhibition Paradigm , 2003, The Journal of Neuroscience.

[43]  J. Wickens,et al.  Neural mechanisms of reward-related motor learning , 2003, Current Opinion in Neurobiology.

[44]  David M. Lovinger,et al.  It could be habit forming: drugs of abuse and striatal synaptic plasticity , 2003, Trends in Neurosciences.

[45]  K. Berridge,et al.  Hyperdopaminergic Mutant Mice Have Higher “Wanting” But Not “Liking” for Sweet Rewards , 2003, The Journal of Neuroscience.

[46]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[47]  P. Calabresi,et al.  Dopamine, Acetylcholine and Nitric Oxide Systems Interact to Induce Corticostriatal Synaptic Plasticity , 2003, Reviews in the neurosciences.

[48]  John A. Dani,et al.  Differential Desensitization and Distribution of Nicotinic Acetylcholine Receptor Subtypes in Midbrain Dopamine Areas , 2003, The Journal of Neuroscience.

[49]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[50]  J. A. Dani,et al.  Muscarinic and Nicotinic Cholinergic Mechanisms in the Mesostriatal Dopamine Systems , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[51]  S. Cragg Variable Dopamine Release Probability and Short-Term Plasticity between Functional Domains of the Primate Striatum , 2003, The Journal of Neuroscience.

[52]  J. Hollerman,et al.  Changes in behavior-related neuronal activity in the striatum during learning , 2003, Trends in Neurosciences.

[53]  P. Calabresi,et al.  Targeting striatal cholinergic interneurons in Parkinson’s disease: Focus on metabotropic glutamate receptors , 2003, Neuropharmacology.

[54]  Nicolas Le Novère,et al.  Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice , 2003, The Journal of Neuroscience.

[55]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[56]  P. Montague,et al.  Dynamic Gain Control of Dopamine Delivery in Freely Moving Animals , 2004, The Journal of Neuroscience.

[57]  J. Wickens,et al.  Modulation of an Afterhyperpolarization by the Substantia Nigra Induces Pauses in the Tonic Firing of Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[58]  A. C. Collins,et al.  Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. , 2004, Molecular pharmacology.

[59]  S. Wonnacott,et al.  Nicotinic acetylcholine receptors and the regulation of neuronal signalling. , 2004, Trends in pharmacological sciences.

[60]  D. Sulzer,et al.  Frequency-dependent modulation of dopamine release by nicotine , 2004, Nature Neuroscience.

[61]  S. Cragg,et al.  Nicotine amplifies reward-related dopamine signals in striatum , 2004, Nature Neuroscience.

[62]  J. A. Dani,et al.  Cholinergic Drugs for Alzheimer's Disease Enhance in Vitro Dopamine Release , 2004, Molecular Pharmacology.

[63]  A. C. Collins,et al.  Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization , 2004, Science.

[64]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[65]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[66]  J. Yakel,et al.  Desensitization of nicotinic ACh receptors: shaping cholinergic signaling , 2005, Trends in Neurosciences.

[67]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[68]  M. Kringelbach The human orbitofrontal cortex: linking reward to hedonic experience , 2005, Nature Reviews Neuroscience.

[69]  P. Calabresi,et al.  Striatal synaptic plasticity: Implications for motor learning and Parkinson's disease , 2005, Movement disorders : official journal of the Movement Disorder Society.

[70]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[71]  R. Palmiter,et al.  Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. , 2005, Behavioral neuroscience.

[72]  R. Wightman,et al.  Rapid Dopamine Signaling in the Nucleus Accumbens during Contingent and Noncontingent Cocaine Administration , 2005, Neuropsychopharmacology.