Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities

In this paper, we establish oracle inequalities for penalized projection estimators of the intensity of an inhomogeneous Poisson process. We study consequently the adaptive properties of penalized projection estimators. At first we provide lower bounds for the minimax risk over various sets of smoothness for the intensity and then we prove that our estimators achieve these lower bounds up to some constants. The crucial tools to obtain the oracle inequalities are new concentration inequalities for suprema of integral functionals of Poisson processes which are analogous to Talagrand’s inequalities for empirical processes.

[1]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[2]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[3]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[4]  G. Kerkyacharian,et al.  Estimation de densité par méthode de noyau et d'ondelettes : les liens entre la géométries du noyau et les contraintes de régularité , 1992 .

[5]  P. Massart,et al.  From Model Selection to Adaptive Estimation , 1997 .

[6]  Laure Reboul Estimation sous restriction de forme et application a la fiabilite. : tests de validation pour un modele parametrique de processus de poisson non homogene , 1998 .

[7]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[8]  Liming Wu,et al.  A new modified logarithmic Sobolev inequality for Poisson point processes and several applications , 2000 .

[9]  Y. Baraud Model selection for regression on a fixed design , 2000 .

[10]  J. Marron,et al.  Asymptotic Optimality of the Least-Squares Cross-Validation Bandwidth for Kernel Estimates of Intensity Functions , 1991 .

[11]  Y. Kutoyants,et al.  Statistical Inference for Spatial Poisson Processes , 1998 .

[12]  J. Kuelbs Probability on Banach spaces , 1978 .

[13]  Inégalités exponentielles pour les processus empiriques , 2000 .

[14]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[15]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[16]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[17]  C. L. Mallows Some comments on C_p , 1973 .

[18]  Ja-Yong Koo,et al.  Poisson intensity estimation for tomographic data using a wavelet shrinkage approach , 2002, IEEE Trans. Inf. Theory.

[19]  M. Ledoux On Talagrand's deviation inequalities for product measures , 1997 .

[20]  P. Massart,et al.  Gaussian model selection , 2001 .

[21]  I. Ibragimov,et al.  Norms of Gaussian sample functions , 1976 .

[22]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[23]  Nicolas Privault,et al.  Concentration and deviation inequalities in infinite dimensions via covariance representations , 2002 .

[24]  E. Kolaczyk WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS USING CORRECTED THRESHOLDS , 1999 .

[25]  S. Bobkov,et al.  On Modified Logarithmic Sobolev Inequalities for Bernoulli and Poisson Measures , 1998 .

[26]  E. Rio Une inégalité de Bennett pour les maxima de processus empiriques , 2002 .

[27]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[28]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[29]  C. Houdré Remarks on deviation inequalities for functions of infinitely divisible random vectors , 2002 .

[30]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[31]  D. Aldous Exchangeability and related topics , 1985 .

[32]  David L. Donoho,et al.  Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .

[33]  A. Barron,et al.  APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .