Equipping an underwater glider with a new echosounder to explore ocean ecosystems

[1]  M. Moline,et al.  Predator-guided sampling reveals biotic structure in the bathypelagic , 2016, Proceedings of the Royal Society B: Biological Sciences.

[2]  E. Murphy,et al.  An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. , 2014 .

[3]  Olav Rune Godø,et al.  Behaviour of herring (Clupea harengus L.) towards an approaching autonomous underwater vehicle , 2004 .

[4]  Gwyn Griffiths,et al.  Comparison of acoustic backscatter measurements from a ship-mounted Acoustic Doppler Current Profiler and an EK500 scientific echo-sounder , 1996 .

[5]  P. Ressler,et al.  The spatial distribution of euphausiid aggregations in the Northern California Current during August 2000 , 2005 .

[6]  R. Cowen,et al.  Associations between lobster phyllosoma and gelatinous zooplankton in relation to oceanographic properties in the northern Gulf of Mexico , 2017 .

[7]  John A. Barth,et al.  Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current , 2005 .

[8]  Dezhang Chu,et al.  A Wave Glider Approach to Fisheries Acoustics: Transforming How We Monitor the Nation's Commercial Fisheries in the 21st Century , 2014 .

[9]  Mark A. Moline,et al.  Sensor Fusion and Autonomy as a Powerful Combination for Biological Assessment in the Marine Environment , 2016, Robotics.

[10]  J.E. Manley,et al.  Unmanned surface vehicles, 15 years of development , 2008, OCEANS 2008.

[11]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[12]  J. T. Enright Diurnal vertical migration: Adaptive significance and timing. Part 1. Selective advantage: A metabolic model1 , 1977 .

[13]  Bartolomé Garau,et al.  Thermal Lag Correction on Slocum CTD Glider Data , 2011 .

[14]  Paul G. Fernandes,et al.  Autonomous underwater vehicles: future platforms for fisheries acoustics , 2003 .

[15]  Russ E. Davis,et al.  Glider surveillance of physics and biology in the southern California Current System , 2008 .

[16]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[17]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[18]  D. Skelly,et al.  Suburbanization alters small pond ecosystems: Shifts in nitrogen and food web dynamics , 2018 .

[19]  Gaurav S. Sukhatme,et al.  Towards the Improvement of Autonomous Glider Navigational Accuracy Through the use of Regional Ocean Models , 2010 .

[20]  Peter H. Wiebe,et al.  Trans-Atlantic responses of Calanus finmarchicus populations to basin-scale forcing associated with the North Atlantic Oscillation☆ , 2003 .

[21]  B. Bett,et al.  Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience , 2014 .

[22]  H. Stommel The Slocum Mission , 1989 .

[23]  D. Rudnick Ocean Research Enabled by Underwater Gliders. , 2016, Annual review of marine science.

[24]  Bastien Queste,et al.  Using gliders to study a phytoplankton bloom in the Ross Sea, antarctica , 2011, OCEANS'11 MTS/IEEE KONA.

[25]  M. Moline,et al.  Improved monitoring of HABs using autonomous underwater vehicles (AUV) , 2006 .

[26]  Harold P. Batchelder,et al.  The GLOBEC Northeast Pacific California Current System Program , 2002 .

[27]  Peter I. Miller,et al.  Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas , 2014 .

[28]  Peter H. Wiebe,et al.  BIOMAPER-II: an integrated instrument platform for coupled biological and physical measurements in coastal and oceanic regimes , 2002 .

[29]  John A. Barth,et al.  Cetacean distributions relative to ocean processes in the northern California Current System , 2005 .

[30]  D. Mann,et al.  Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology , 2012 .

[31]  Thomas M. Dauphinee,et al.  Continuous and rapid profiling of zooplankton with an electronic counter mounted on a ‘Batfish’ vehicle , 1980 .

[32]  Kelly J Benoit-Bird,et al.  Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques. , 2016, Annual review of marine science.

[33]  Daniel L. Rudnick,et al.  Observing the Ocean with Autonomous and Lagrangian Platforms and Sensors (ALPS): the Role of ALPS in Sustained Ocean Observing Systems , 2003 .

[34]  Geoffrey A. Hollinger,et al.  Topological Hotspot Identification for Informative Path Planning with a Marine Robot , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Alex De Robertis,et al.  A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise , 2007 .

[36]  T. Stanton Effects of transducer motion on echo‐integration techniques , 1982 .

[37]  Noah Lawrence-Slavas,et al.  The use of Saildrones to examine spring conditions in the Bering Sea: Vehicle specification and mission performance , 2015, OCEANS 2015 - MTS/IEEE Washington.

[38]  M. Ohman,et al.  Use of glider-class acoustic Doppler profilers for estimating zooplankton biomass , 2012 .

[39]  Lars Midttun,et al.  Measurements of the Reflection of Sound by Fish , 1962 .

[40]  John H. Steele,et al.  Can ecological theory cross the land-sea boundary? , 1991 .

[41]  C.R. Barnes,et al.  Building the World's First Multi-node Cabled Ocean Observatories (NEPTUNE Canada and VENUS, Canada): Science, Realities, Challenges and Opportunities , 2008, OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean.

[42]  Mark A. Moline,et al.  Integration of Scientific Echo Sounders with an Adaptable Autonomous Vehicle to Extend Our Understanding of Animals from the Surface to the Bathypelagic , 2015 .

[43]  John H. Steele,et al.  The Significance of Interannual Variability , 1993 .

[44]  Mary Jane Perry,et al.  Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast , 2008 .

[45]  John A. Orcutt,et al.  The Ocean Observatories Initiative: Sustained Ocean Observing Across a Range of Spatial Scales , 2010 .

[46]  Randolph M. Jones,et al.  Trophic cascades in the western Ross Sea, Antarctica: revisited , 2015 .

[47]  E. John Simmonds,et al.  Fisheries Acoustics , 1992, Fish & Fisheries Series.

[48]  R. Brodeur,et al.  Coastal upwelling fronts as a boundary for planktivorous fish distributions , 2018 .

[49]  J. Berge,et al.  AUV-based acoustic observations of the distribution and patchiness of pelagic scattering layers during midnight sun† , 2017 .

[50]  C. Ashjian,et al.  Euphausiid distribution along the Western Antarctic Peninsula—Part B: Distribution of euphausiid aggregations and biomass, and associations with environmental features , 2008 .

[51]  David M. Fratantoni,et al.  Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders , 2008 .

[52]  J. T. Enright The why and when of up and down , 1979 .

[53]  Junku Yuh,et al.  Design and Control of Autonomous Underwater Robots: A Survey , 2000, Auton. Robots.

[54]  J. Boucher,et al.  How much fish is hidden in the surface and bottom acoustic blind zones , 2009 .

[55]  R. W. Baird,et al.  Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™ , 2012, PloS one.

[56]  D. C. Webb,et al.  SLOCUM: an underwater glider propelled by environmental energy , 2001 .

[57]  M. Straškraba,et al.  Control mechanisms of diel vertical migration: theoretical assumptions. , 2001, Journal of theoretical biology.

[58]  John A. Barth,et al.  The Ocean Observatories Initiative , 2018, Front. Mar. Sci..

[59]  M. Moline,et al.  Prey in oceanic sound scattering layers organize to get a little help from their friends , 2017 .

[60]  Rudy J. Kloser Improved precision of acoustic surveys of benthopelagic fish by means of a deep-towed transducer , 1996 .

[61]  A. Brierley,et al.  Standard and special: Sensors used during the Autosub Science Missions programme , 2001 .

[62]  P. Franks,et al.  Asymmetric mixing transport: A horizontal transport mechanism for sinking plankton and sediment in tidal flows , 2001 .

[63]  M. van der Schaar,et al.  On-board underwater glider real-time acoustic environment sensing , 2011, OCEANS 2011 IEEE - Spain.

[64]  Christopher D. Wilson,et al.  Can a bottom-moored echosounder array provide a survey-comparable index of abundance? , 2018 .

[65]  P. Stabeno,et al.  Advances in Ecosystem Research: Saildrone Surveys of Oceanography, Fish, and Marine Mammals in the Bering Sea , 2017 .

[66]  Coupled biological and physical studies of plankton populations in the Georges Bank region and related North Atlantic GLOBEC study sites , 2001 .

[67]  S. Bushinsky,et al.  Oxygen Concentrations and Biological Fluxes in the Open Ocean , 2014 .