OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge Collaborative AutoML System

Automated machine learning (AutoML) seeks to build ML models with minimal human effort. While considerable research has been conducted in the area of AutoML in general, aiming to take humans out of the loop when building artificial intelligence (AI) applications, scant literature has focused on how AutoML works well in open-environment scenarios such as the process of training and updating large models, industrial supply chains or the industrial metaverse, where people often face open-loop problems during the search process: they must continuously collect data, update data and models, satisfy the requirements of the development and deployment environment, support massive devices, modify evaluation metrics, etc. Addressing the open-environment issue with pure data-driven approaches requires considerable data, computing resources, and effort from dedicated data engineers, making current AutoML systems and platforms inefficient and computationally intractable. Human-computer interaction is a practical and feasible way to tackle the problem of open-environment AI. In this paper, we introduce OmniForce, a human-centered AutoML (HAML) system that yields both human-assisted ML and ML-assisted human techniques, to put an AutoML system into practice and build adaptive AI in open-environment scenarios. Specifically, we present OmniForce in terms of ML version management; pipeline-driven development and deployment collaborations; a flexible search strategy framework; and widely provisioned and crowdsourced application algorithms, including large models. Furthermore, the (large) models constructed by OmniForce can be automatically turned into remote services in a few minutes; this process is dubbed model as a service (MaaS). Experimental results obtained in multiple search spaces and real-world use cases demonstrate the efficacy and efficiency of OmniForce.

[1]  Juhua Liu,et al.  Bag of Tricks for Effective Language Model Pretraining and Downstream Adaptation: A Case Study on GLUE , 2023, ArXiv.

[2]  Sjoerd van Steenkiste,et al.  Scaling Vision Transformers to 22 Billion Parameters , 2023, ICML.

[3]  Bo Du,et al.  Advancing Plain Vision Transformer Toward Remote Sensing Foundation Model , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[4]  D. Tao,et al.  ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond , 2022, International Journal of Computer Vision.

[5]  Juhua Liu,et al.  Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-Based Sentiment Analysis , 2022, IEEE Transactions on Knowledge and Data Engineering.

[6]  Pengfei Xia,et al.  A Systematic Survey of Regularization and Normalization in GANs , 2020, ACM Comput. Surv..

[7]  Dacheng Tao,et al.  ViTPose+: Vision Transformer Foundation Model for Generic Body Pose Estimation , 2022, ArXiv.

[8]  Xinbo Gao,et al.  Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE , 2022, ArXiv.

[9]  P. Suganthan,et al.  Unified Discrete Diffusion for Simultaneous Vision-Language Generation , 2022, ICLR.

[10]  Gang Li,et al.  3DDesigner: Towards Photorealistic 3D Object Generation and Editing with Text-guided Diffusion Models , 2022, ArXiv.

[11]  Tongliang Liu,et al.  DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Haimei Zhao,et al.  D2Animator: Dual Distillation of StyleGAN For High-Resolution Face Animation , 2022, ACM Multimedia.

[13]  Dacheng Tao,et al.  SparseAdapter: An Easy Approach for Improving the Parameter-Efficiency of Adapters , 2022, EMNLP.

[14]  Dacheng Tao,et al.  Vega-MT: The JD Explore Academy Translation System for WMT22 , 2022, ArXiv.

[15]  Yu Cao,et al.  On the Complementarity between Pre-Training and Random-Initialization for Resource-Rich Machine Translation , 2022, COLING.

[16]  Yu-Chiang Frank Wang,et al.  Frido: Feature Pyramid Diffusion for Complex Scene Image Synthesis , 2022, AAAI.

[17]  Cihang Xie,et al.  Masked Autoencoders Enable Efficient Knowledge Distillers , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Juhua Liu,et al.  PANDA: Prompt Transfer Meets Knowledge Distillation for Efficient Model Adaptation , 2022, ArXiv.

[19]  Jianlong Fu,et al.  TinyViT: Fast Pretraining Distillation for Small Vision Transformers , 2022, ECCV.

[20]  Jing Zhang,et al.  DPText-DETR: Towards Better Scene Text Detection with Dynamic Points in Transformer , 2022, AAAI.

[21]  Jing Yu Koh,et al.  Scaling Autoregressive Models for Content-Rich Text-to-Image Generation , 2022, Trans. Mach. Learn. Res..

[22]  S. Savarese,et al.  OmniXAI: A Library for Explainable AI , 2022, ArXiv.

[23]  J. Yang,et al.  Modeling Image Composition for Complex Scene Generation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Zhi Zhou Open-environment machine learning , 2022, National science review.

[25]  Juhua Liu,et al.  E2S2: Encoding-Enhanced Sequence-to-Sequence Pretraining for Language Understanding and Generation , 2022, ArXiv.

[26]  Dacheng Tao,et al.  Parameter-Efficient and Student-Friendly Knowledge Distillation , 2022, IEEE Transactions on Multimedia.

[27]  Lefei Zhang,et al.  Multi-Task Learning With Multi-Query Transformer for Dense Prediction , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[28]  L. Zhang,et al.  Are Transformers Effective for Time Series Forecasting? , 2022, AAAI.

[29]  Yu Cao,et al.  Interpretable Proof Generation via Iterative Backward Reasoning , 2022, NAACL.

[30]  Changxing Ding,et al.  HL-Net: Heterophily Learning Network for Scene Graph Generation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Jing Zhang,et al.  ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation , 2022, NeurIPS.

[32]  Jia Wu,et al.  Dual-branch Density Ratio Estimation for Signed Network Embedding , 2022, WWW.

[33]  Zheng Zhang,et al.  BLISS: Robust Sequence-to-Sequence Learning via Self-Supervised Input Representation , 2022, ArXiv.

[34]  Liang Ding,et al.  A Contrastive Cross-Channel Data Augmentation Framework for Aspect-Based Sentiment Analysis , 2022, COLING.

[35]  Prafulla Dhariwal,et al.  Hierarchical Text-Conditional Image Generation with CLIP Latents , 2022, ArXiv.

[36]  Shirui Pan,et al.  Multi-level graph learning network for hyperspectral image classification , 2022, Pattern Recognit..

[37]  Sihan Ma,et al.  Rethinking Portrait Matting with Privacy Preserving , 2022, International Journal of Computer Vision.

[38]  Laurent El Shafey,et al.  Pathways: Asynchronous Distributed Dataflow for ML , 2022, MLSys.

[39]  Jing Zhang,et al.  Towards Data-Efficient Detection Transformers , 2022, ECCV.

[40]  Maja R. Rudolph,et al.  Latent Outlier Exposure for Anomaly Detection with Contaminated Data , 2022, ICML.

[41]  Zhe Chen,et al.  SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection , 2022, AAAI.

[42]  B. Ommer,et al.  High-Resolution Image Synthesis with Latent Diffusion Models , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  A. Yuille,et al.  Masked Feature Prediction for Self-Supervised Visual Pre-Training , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  D. Tao,et al.  Self-Ensembling GAN for Cross-Domain Semantic Segmentation , 2021, IEEE Transactions on Multimedia.

[45]  D. Tao,et al.  PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation , 2021, ECCV.

[46]  Han Hu,et al.  SimMIM: a Simple Framework for Masked Image Modeling , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Li Dong,et al.  Swin Transformer V2: Scaling Up Capacity and Resolution , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Ross B. Girshick,et al.  Masked Autoencoders Are Scalable Vision Learners , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Dacheng Tao,et al.  Stagewise Unsupervised Domain Adaptation With Adversarial Self-Training for Road Segmentation of Remote-Sensing Images , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[50]  D. Tao,et al.  I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-Shaped Scene Text Detection , 2021, International Journal of Computer Vision.

[51]  Yelong Shen,et al.  LoRA: Low-Rank Adaptation of Large Language Models , 2021, ICLR.

[52]  Alexander Kolesnikov,et al.  Scaling Vision Transformers , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Tianfu Wu,et al.  Learning Layout and Style Reconfigurable GANs for Controllable Image Synthesis , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Junchi Yan,et al.  NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification , 2023, NeurIPS.

[55]  Junchi Yan,et al.  A Max-Flow Based Approach for Neural Architecture Search , 2022, ECCV.

[56]  Zhaopeng Tu,et al.  Redistributing Low-Frequency Words: Making the Most of Monolingual Data in Non-Autoregressive Translation , 2022, ACL.

[57]  Marco F. Huber,et al.  XAutoML: A Visual Analytics Tool for Establishing Trust in Automated Machine Learning , 2022, ArXiv.

[58]  Z. Li,et al.  Image Synthesis from Layout with Locality-Aware Mask Adaption , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[59]  Foundations of Deep Learning , 2021, Deep Learning on Graphs.

[60]  Dacheng Tao,et al.  Improving Neural Machine Translation by Bidirectional Training , 2021, EMNLP.

[61]  Dacheng Tao,et al.  The USYD-JD Speech Translation System for IWSLT2021 , 2021, IWSLT.

[62]  Jianmin Wang,et al.  Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting , 2021, NeurIPS.

[63]  Dacheng Tao,et al.  Progressive Multi-Granularity Training for Non-Autoregressive Translation , 2021, FINDINGS.

[64]  Quoc V. Le,et al.  CoAtNet: Marrying Convolution and Attention for All Data Sizes , 2021, NeurIPS.

[65]  Dacheng Tao,et al.  ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias , 2021, NeurIPS.

[66]  Jiwen Lu,et al.  DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification , 2021, NeurIPS.

[67]  Derek F. Wong,et al.  Rejuvenating Low-Frequency Words: Making the Most of Parallel Data in Non-Autoregressive Translation , 2021, ACL.

[68]  Junchi Yan,et al.  Rethinking Bi-Level Optimization in Neural Architecture Search: A Gibbs Sampling Perspective , 2021, AAAI.

[69]  Robin Rombach,et al.  High-Resolution Complex Scene Synthesis with Transformers , 2021, ArXiv.

[70]  Dacheng Tao,et al.  Privacy-Preserving Portrait Matting , 2021, ACM Multimedia.

[71]  N. Codella,et al.  CvT: Introducing Convolutions to Vision Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[72]  Yu Cao,et al.  Towards Efficiently Diversifying Dialogue Generation Via Embedding Augmentation , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[73]  Bram Adams,et al.  On the Co-evolution of ML Pipelines and Source Code - Empirical Study of DVC Projects , 2021, 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).

[74]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[75]  Alec Radford,et al.  Zero-Shot Text-to-Image Generation , 2021, ICML.

[76]  Zhouchen Lin,et al.  Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Erick Oduor,et al.  AutoDS: Towards Human-Centered Automation of Data Science , 2021, CHI.

[78]  Zhaopeng Tu,et al.  Understanding and Improving Lexical Choice in Non-Autoregressive Translation , 2020, ICLR.

[79]  B. Ommer,et al.  Taming Transformers for High-Resolution Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Hui Xiong,et al.  Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting , 2020, AAAI.

[81]  Gabriel Synnaeve,et al.  Self-Training and Pre-Training are Complementary for Speech Recognition , 2020, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[82]  D. Tao,et al.  Tighter Generalization Bounds for Iterative Differentially Private Learning Algorithms , 2020, UAI.

[83]  Jianping Gou,et al.  Knowledge Distillation: A Survey , 2020, International Journal of Computer Vision.

[84]  Bryan Lim,et al.  Time-series forecasting with deep learning: a survey , 2020, Philosophical Transactions of the Royal Society A.

[85]  R Devon Hjelm,et al.  Object-Centric Image Generation from Layouts , 2020, AAAI.

[86]  Ziyu Guan,et al.  SkipNode: On Alleviating Over-smoothing for Deep Graph Convolutional Networks , 2021, ArXiv.

[87]  G. Vacanti,et al.  Alibi Explain: Algorithms for Explaining Machine Learning Models , 2021, J. Mach. Learn. Res..

[88]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[89]  Bohan Wang,et al.  Robustness, Privacy, and Generalization of Adversarial Training , 2020, ArXiv.

[90]  Dacheng Tao,et al.  Context-Aware Cross-Attention for Non-Autoregressive Translation , 2020, COLING.

[91]  Fei Wang,et al.  ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding , 2020, NeurIPS.

[92]  Di Wu,et al.  SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling , 2020, EMNLP.

[93]  Dacheng Tao,et al.  Self-Supervised Pose Adaptation for Cross-Domain Image Animation , 2020, IEEE Transactions on Artificial Intelligence.

[94]  Johnu George,et al.  A Scalable and Cloud-Native Hyperparameter Tuning System , 2020, ArXiv.

[95]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[96]  Yu Zhang,et al.  Conformer: Convolution-augmented Transformer for Speech Recognition , 2020, INTERSPEECH.

[97]  D. Tao,et al.  Self-Attention with Cross-Lingual Position Representation , 2020, ACL.

[98]  Yi Yang,et al.  NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search , 2020, ICLR.

[99]  Benteng Ma,et al.  Auto Learning Attention , 2020, NeurIPS.

[100]  Daniel R. Jiang,et al.  BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization , 2020, NeurIPS.

[101]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[102]  Yi Yang,et al.  One-Shot Neural Architecture Search via Self-Evaluated Template Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[103]  Takuya Akiba,et al.  Optuna: A Next-generation Hyperparameter Optimization Framework , 2019, KDD.

[104]  Dacheng Tao,et al.  The University of Sydney’s Machine Translation System for WMT19 , 2019, WMT.

[105]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[106]  Yi Yang,et al.  Searching for a Robust Neural Architecture in Four GPU Hours , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[107]  Zhe Chen,et al.  Progressive LiDAR adaptation for road detection , 2019, IEEE/CAA Journal of Automatica Sinica.

[108]  Ameet Talwalkar,et al.  Random Search and Reproducibility for Neural Architecture Search , 2019, UAI.

[109]  Mona Attariyan,et al.  Parameter-Efficient Transfer Learning for NLP , 2019, ICML.

[110]  Kirthevasan Kandasamy,et al.  ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization , 2019, ArXiv.

[111]  Quoc V. Le,et al.  The Evolved Transformer , 2019, ICML.

[112]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[113]  Xin Yao,et al.  Evolutionary Generative Adversarial Networks , 2018, IEEE Transactions on Evolutionary Computation.

[114]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[115]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[116]  Andrew Gordon Wilson,et al.  GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.

[117]  Ion Stoica,et al.  Tune: A Research Platform for Distributed Model Selection and Training , 2018, ArXiv.

[118]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[119]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[120]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.

[121]  Haichen Shen,et al.  TVM: An Automated End-to-End Optimizing Compiler for Deep Learning , 2018, OSDI.

[122]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[123]  Somesh Jha,et al.  Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting , 2017, 2018 IEEE 31st Computer Security Foundations Symposium (CSF).

[124]  Dacheng Tao,et al.  Perceptual Adversarial Networks for Image-to-Image Transformation , 2017, IEEE Transactions on Image Processing.

[125]  Guorui Zhou,et al.  Deep Interest Network for Click-Through Rate Prediction , 2017, KDD.

[126]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[127]  Vittorio Ferrari,et al.  COCO-Stuff: Thing and Stuff Classes in Context , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[128]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[129]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[130]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[131]  Davide Anguita,et al.  Differential privacy and generalization: Sharper bounds with applications , 2017, Pattern Recognit. Lett..

[132]  Yunming Ye,et al.  DeepFM: A Factorization-Machine based Neural Network for CTR Prediction , 2017, IJCAI.

[133]  Quoc V. Le,et al.  Large-Scale Evolution of Image Classifiers , 2017, ICML.

[134]  Ameet Talwalkar,et al.  Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization , 2016, ICLR.

[135]  Timo Aila,et al.  Pruning Convolutional Neural Networks for Resource Efficient Inference , 2016, ICLR.

[136]  Ramesh Raskar,et al.  Designing Neural Network Architectures using Reinforcement Learning , 2016, ICLR.

[137]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[138]  Tomas Mikolov,et al.  Bag of Tricks for Efficient Text Classification , 2016, EACL.

[139]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[140]  Pramod Viswanath,et al.  The Composition Theorem for Differential Privacy , 2013, IEEE Transactions on Information Theory.

[141]  Aaron Klein,et al.  RoBO : A Flexible and Robust Bayesian Optimization Framework in Python , 2017 .

[142]  Aaron Klein,et al.  Bayesian Optimization with Robust Bayesian Neural Networks , 2016, NIPS.

[143]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[144]  Heng-Tze Cheng,et al.  Wide & Deep Learning for Recommender Systems , 2016, DLRS@RecSys.

[145]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[146]  Michael S. Bernstein,et al.  Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations , 2016, International Journal of Computer Vision.

[147]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[149]  Neil D. Lawrence,et al.  Batch Bayesian Optimization via Local Penalization , 2015, AISTATS.

[150]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[151]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[152]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[153]  Kobbi Nissim,et al.  On the Generalization Properties of Differential Privacy , 2015, ArXiv.

[154]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[155]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[156]  Toniann Pitassi,et al.  Preserving Statistical Validity in Adaptive Data Analysis , 2014, STOC.

[157]  Walaa Medhat,et al.  Sentiment analysis algorithms and applications: A survey , 2014 .

[158]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[159]  Aaron Roth,et al.  The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..

[160]  Kevin Leyton-Brown,et al.  An Efficient Approach for Assessing Hyperparameter Importance , 2014, ICML.

[161]  Imed Zitouni,et al.  Natural Language Processing of Semitic Languages , 2014, Theory and Applications of Natural Language Processing.

[162]  Seref Sagiroglu,et al.  Big data: A review , 2013, 2013 International Conference on Collaboration Technologies and Systems (CTS).

[163]  David Ginsbourger,et al.  Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection , 2013, LION.

[164]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[165]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[166]  S. Kakade,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2012, IEEE Transactions on Information Theory.

[167]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[168]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[169]  Michal Konkol,et al.  Named Entity Recognition , 2012 .

[170]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[171]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[172]  Miles Osborne,et al.  Statistical Machine Translation , 2010, Encyclopedia of Machine Learning and Data Mining.

[173]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[174]  Kunal Talwar,et al.  Mechanism Design via Differential Privacy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[175]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[176]  Rob J Hyndman,et al.  25 years of time series forecasting , 2006 .

[177]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[178]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[179]  Gerhard J. Woeginger,et al.  Automata, Languages and Programming , 2003, Lecture Notes in Computer Science.

[180]  M. Maybury,et al.  Automatic Summarization , 2002, Computational Linguistics.

[181]  Lynette Hirschman,et al.  Natural language question answering: the view from here , 2001, Natural Language Engineering.

[182]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .