On sampled-data models for nonlinear systems

Models for deterministic continuous-time nonlinear systems typically take the form of ordinary differential equations. To utilize these models in practice invariably requires discretization. In this paper, we show how an approximate sampled-data model can be obtained for deterministic nonlinear systems such that the local truncation error between the output of this model and the true system is of order /spl Delta//sup r+1/, where /spl Delta/ is the sampling period and r is the system relative degree. The resulting model includes extra zero dynamics which have no counterpart in the underlying continuous-time system. The ideas presented here generalize well-known results for the linear case. We also explore the implications of these results in nonlinear system identification.

[1]  T. Apostol Mathematical Analysis , 1957 .

[2]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[3]  K. Åström,et al.  Zeros of sampled systems , 1980 .

[4]  A. Isidori Nonlinear Control Systems , 1985 .

[5]  D. Normand-Cyrot,et al.  On the linearizing feedback in nonlinear sampled data control schemes , 1986, 1986 25th IEEE Conference on Decision and Control.

[6]  R. Marino On the largest feedback linearizable subsystem , 1986 .

[7]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[8]  A. Arapostathis,et al.  Linearization of discrete-time systems , 1987 .

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  B. Jakubczyk Feedback linearization of discrete-time systems , 1987 .

[11]  B. Wahlberg Limit results for sampled systems , 1988 .

[12]  A. Isidori,et al.  Local stabilization of minimum-phase nonlinear systems , 1988 .

[13]  S. Monaco,et al.  Zero dynamics of sampled nonlinear systems , 1988 .

[14]  Torkel Glad Deadbeat Control for Nonlinear Systems , 1988 .

[15]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[16]  A. Arapostathis,et al.  The effect sampling on linear equivalence and feedback linearization , 1990 .

[17]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[18]  Bo Wahlberg The effects of rapid sampling in system identification , 1990, Autom..

[19]  Eduardo Sontag,et al.  Controllability of Nonlinear Discrete-Time Systems: A Lie-Algebraic Approach , 1990, SIAM Journal on Control and Optimization.

[20]  D. Normand-Cyrot,et al.  Some comments about linearization under sampling , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[21]  S. Monaco,et al.  About a normal "column-form" for nonlinear discrete-time perturbed control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[22]  M. Araki,et al.  Stability of the limiting zeros of sampled-data systems with zero-and first-order holds , 1993 .

[23]  Lennart Ljung,et al.  On sampling of continuous time stochastic processes , 1993 .

[24]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[25]  Dorothée Normand-Cyrot,et al.  A Unified Representation for Nonlinear Discrete-Time and Sampled Dynamics , 1995 .

[26]  Graham C. Goodwin,et al.  Sampling in Digital Sig-nal Processing and Control , 1996 .

[27]  S. Monaco,et al.  On regulation under sampling , 1997, IEEE Trans. Autom. Control..

[28]  S. Weller,et al.  Sampling zeros and the Euler-Frobenius polynomials , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[29]  P. Kokotovic,et al.  A note on input-to-state stability of sampled-data nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[30]  S. Monaco,et al.  On the discrete-time normal form , 1998, IEEE Trans. Autom. Control..

[31]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[32]  Hassan K. Khalil,et al.  Output feedback sampled-data control of nonlinear systems using high-gain observers , 2001, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[33]  S. O. Reza Moheimani,et al.  Perspectives in robust control , 2001 .

[34]  Dragan Nesic,et al.  Sampled-data control of nonlinear systems: An overview of recent results , 2001 .

[35]  M. Blachuta On fast sampling zeros of systems with fractional-order hold , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[36]  Torsten Söderström,et al.  CONTINUOUS-TIME AR PARAMETER ESTIMATION BY USING PROPERTIES OF SAMPLED SYSTEMS , 2002 .

[37]  E. K. Larsson Limiting Properties of Sampled Stochastic Systems , 2003 .

[38]  G. Goodwin,et al.  Generalised hold functions for fast sampling rates , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[39]  Kumpati S. Narendra,et al.  Identification and control of a nonlinear discrete-time system based on its linearization: a unified framework , 2004, IEEE Transactions on Neural Networks.

[40]  Dragan Nesic,et al.  A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models , 2004, IEEE Transactions on Automatic Control.

[41]  S. Monaco,et al.  Exponential representations of two-input nonlinear discrete-time dynamics , 2004, Proceedings of the 2004 American Control Conference.