QoS-Guaranteed Secure Multicast Routing Protocol for Satellite IP Networks Using Hierarchical Architecture

Most recent satellite network research has focused on providing routing services without considering security. In this paper, for the sake of better global coverage, we introduce a novel triple-layered satellite network architecture including Geostationary Earth Orbit (GEO), Highly Elliptical Orbit (HEO), and Low Earth Orbit (LEO) satellite layers, which provides the near-global coverage with 24 hour uninterrupted over the areas varying from 75° S to 90° N. On the basis of the hierarchical architecture, we propose a QoS-guaranteed secure multicast routing protocol (QGSMRP) for satellite IP networks using the logical location concept to isolate the mobility of LEO and HEO satellites. In QGSMRP, we employ the asymmetric cryptography to secure the control messages via the pairwise key pre-distribution, and present a least cost tree (LCT) strategy to construct the multicast tree under the condition that the QoS constraints are guaranteed, aiming to minimize the tree cost. Simulation results show that the performance benefits of the proposed QGSMRP in terms of the end-to-end tree delay, the tree cost, and the failure ratio of multicasting connections by comparison with the conventional shortest path tree (SPT) strategy.