Multistep optimal analog-to-digital conversion

An important aspect of analog-to-digital conversion is the impact of quantization errors. This paper outlines how finite horizon constrained optimization methods can be utilized to design converters which minimize a weighted measure of the quantization distortion. We propose a novel converter, which can be implemented as a feedback loop. It embeds /spl Sigma//spl Delta/ conversion in a more general setting and typically provides better performance. We also examine the role played by the associated design parameters in ensuring error convergence.

[1]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems , 1960 .

[2]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[3]  S. Tewksbury,et al.  Oversampled, linear predictive and noise-shaping coders of order N g 1 , 1978 .

[4]  James C. Candy,et al.  A Use of Double Integration in Sigma Delta Modulation , 1985, IEEE Trans. Commun..

[5]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[6]  Vladimir Friedman The structure of the limit cycles in sigma delta modulation , 1988, IEEE Trans. Commun..

[7]  Robert M. Gray,et al.  Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..

[8]  Wu Chou,et al.  Quantization noise in single-loop sigma-delta modulation with sinusoidal inputs , 1989, IEEE Trans. Commun..

[9]  John C. Kieffer,et al.  Analysis of DC input response for a class of one-bit feedback encoders , 1990, IEEE Trans. Commun..

[10]  Peter J. Ramadge,et al.  On the periodicity of symbolic observations of piecewise smooth discrete-time systems , 1990 .

[11]  Robert M. Gray,et al.  Quantization noise spectra , 1990, IEEE Trans. Inf. Theory.

[12]  Robert M. Gray,et al.  Sigma-delta modulation with i.i.d. Gaussian inputs , 1990, IEEE Trans. Inf. Theory.

[13]  Orla Feely,et al.  The Effect of Integrator Leak in , 1991 .

[14]  Leon O. Chua,et al.  The effect of integrator leak in Sigma - Delta modulation , 1991 .

[15]  Wu Chou,et al.  Dithering and its effects on sigma-delta and multistage sigma-delta modulation , 1991, IEEE Trans. Inf. Theory.

[16]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[17]  R. Gray,et al.  Dithered Quantizers , 1993, Proceedings. 1991 IEEE International Symposium on Information Theory.

[18]  Gabor C. Temes,et al.  Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .

[19]  Ning He,et al.  Multiloop sigma-delta quantization , 1992, IEEE Trans. Inf. Theory.

[20]  L. Chua,et al.  NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS , 1992 .

[21]  H. Wang A geometric view of Sigma Delta modulations , 1992 .

[22]  D. F. Delchamps,et al.  Quantization noise in sigma-delta modulations driven by deterministic inputs , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[23]  John Vanderkooy,et al.  Quantization and Dither: A Theoretical Survey , 1992 .

[24]  Robert M. Gray,et al.  Sigma-delta modulation with leaky integration and constant input , 1992, IEEE Trans. Inf. Theory.

[25]  Ping Wah Wong Fully sigma-delta modulation encoded FIR filters , 1992, IEEE Trans. Signal Process..

[26]  Lars Risbo Improved stability and performance from sigma-delta modulators using 1-bit vector quantization , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[27]  D. Delchamps Nonlinear dynamics of oversampling A-to-D converters , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[28]  Avideh Zakhor,et al.  On the stability of sigma delta modulators , 1993, IEEE Trans. Signal Process..

[29]  S. C. Pinault,et al.  On the behavior of the double-loop sigma-delta modulator , 1993 .

[30]  SQren Hein Exploiting Chaos to Suppress Spurious Tones in General Double-Loop EA Modulators , 1993 .

[31]  B. Leung,et al.  High-order single-stage single-bit oversampling A/D converter stabilized with local feedback loops , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[32]  Sundeep Rangan,et al.  Quantization noise spectrum of double-loop sigma-delta converter with sinusoidal input , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[33]  Richard Schreier,et al.  An empirical study of high-order single-bit delta-sigma modulators , 1993 .

[34]  S. Hein Exploiting chaos to suppress spurious tones in general double-loop Sigma Delta modulators , 1993 .

[35]  L. Chua,et al.  Symbolic dynamics of piecewise-linear maps , 1994 .

[36]  S. Powell,et al.  Efficient narrowband FIR and IFIR filters based on powers-of-two sigma-delta coefficient truncation , 1994 .

[37]  Mark Sandler,et al.  Efficient dithering of sigma-delta modulators with adaptive bit flipping , 1995 .

[38]  Timo Koski,et al.  Statistics of the binary quantizer error in single-loop sigma-delta modulation with white Gaussian input , 1995, IEEE Trans. Inf. Theory.

[39]  Orla Feely,et al.  Bandpass sigma-delta modulation-an analysis from the perspective of nonlinear dynamics , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[40]  P. Vaidyanathan,et al.  Results on lattice vector quantization with dithering , 1996 .

[41]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[42]  A. Davies Periodic non-linear oscillations from bandpass /spl Sigma//spl Delta/ modulators , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[43]  Nguyen T. Thao Vector quantization analysis of ΣΔ modulation , 1996, IEEE Trans. Signal Process..

[44]  M. Sandler,et al.  Adaptive sigma-delta modulation for use in DACs , 1996 .

[45]  P. Steiner,et al.  A framework for analysis of high-order sigma-delta modulators , 1997 .

[46]  Anthony C. Davies,et al.  Constraints on constant-input oscillations of a bandpass sigma-delta modulator structure , 1997, Int. J. Circuit Theory Appl..

[47]  Mark Sandler,et al.  Psychoacoustically Optimal Sigma-Delta Modulation , 1997 .

[48]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[49]  Orla Feely,et al.  A tutorial introduction to non‐linear dynamics and chaos and their application to sigma–delta modulators , 1997 .

[50]  R. Schreier,et al.  An algorithm for computing convex positively invariant sets for delta-sigma modulators , 1997 .

[51]  A. J. Magrath,et al.  Digital-domain dithering of sigma-delta modulators using bit flipping , 1997 .

[52]  Ronan Farrell,et al.  Bounding the integrator outputs of second-order sigma-delta modulators , 1998 .

[53]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[54]  G. I. Bourdopoulos,et al.  Stabilization of third-order, single-stage Sigma-Delta modulators , 1999 .

[55]  John Vanderkooy,et al.  A theory of nonsubtractive dither , 2000, IEEE Trans. Signal Process..

[56]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[57]  G. I. Bourdopoulos,et al.  High-order vector sigma-delta modulators , 2000 .

[58]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[59]  Letizia Lo Presti,et al.  Efficient modified-sinc filters for sigma-delta A/D converters , 2000 .

[60]  Use of sigma-delta modulation to control EMI from switch-mode power supplies , 2001, IEEE Trans. Ind. Electron..

[61]  O. Feely,et al.  Lowpass sigma–delta modulation: an analysis by means of the critical lines tool , 2001 .

[62]  Jiun-Lang Huang,et al.  Testing second-order delta–sigma modulators using pseudo-random patterns , 2002 .

[63]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[64]  T. Nakamoto,et al.  Study of odor blender using solenoid valves controlled by delta–sigma modulation method for odor recorder , 2002 .

[65]  Xiaohong Sun,et al.  Tonal behavior analysis of an adaptive second-order sigma-delta modulator , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[66]  Andrea Baschirotto,et al.  Behavioral modeling of switched-capacitor sigma-delta modulators , 2003 .

[67]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[68]  N. Wong,et al.  DC stability analysis of high-order, lowpass ΣΔ modulators with distinct unit circle NTF zeros , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[69]  G. Goodwin,et al.  Audio quantization from a receding horizon control perspective , 2003, Proceedings of the 2003 American Control Conference, 2003..

[70]  I. Dobson,et al.  Hexagonal sigma-delta modulation , 2003 .

[71]  Graham C. Goodwin,et al.  Moving horizon optimal quantizer for audio signals , 2003 .

[72]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .