Exchangeable Gibbs partitions and Stirling triangles

AbstractFor two collections of nonnegative and suitably normalized weights W = (Wj) and V = (Vn,k), a probability distribution on the set of partitions of the set {1, …, n} is defined by assigning to a generic partition {Aj, j ≤ k} the probability Vn,k % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz% ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe% pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam% aaeaqbaaGcbaGaemOvay1aaSbaaSqaaiabd6gaUjabcYcaSiabdUga% RbqabaacbaGccqWFGaaicqWGxbWvdaWgaaWcbaWaaqWaaeaacqWGbb% qqdaWgaaadbaGaeGymaedabeaaaSGaay5bSlaawIa7aaqabaGccqWI% VlctcqWGxbWvdaWgaaWcbaWaaqWaaeaacqWGbbqqdaWgaaadbaGaem% 4AaSgabeaaaSGaay5bSlaawIa7aaqabaaaaa!507F! $$V_{n,k} W_{\left| {A_1 } \right|} \cdots W_{\left| {A_k } \right|} $$ , where |Aj| is the number of elements of Aj. We impose constraints on the weights by assuming that the resulting random partitions Π n of [n] are consistent as n varies, meaning that they define an exchangeable partition of the set of all natural numbers. This implies that the weights W must be of a very special form depending on a single parameter α ∈ [− ∞, 1]. The case α = 1 is trivial, and for each value of α ≠ = 1 the set of possible V-weights is an infinite-dimensional simplex. We identify the extreme points of the simplex by solving the boundary problem for a generalized Stirling triangle. In particular, we show that the boundary is discrete for − ∞ ≤ α < 0 and continuous for 0 ≤ α < 1. For α ≤ 0 the extremes correspond to the members of the Ewens-Pitman family of random partitions indexed by (α,θ), while for 0 < α < 1 the extremes are obtained by conditioning an (α,θ)-partition on the asymptotics of the number of blocks of Πn as n tends to infinity. Bibliography: 29 titles.

[1]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[2]  Jim Pitman An extension of de Finetti's theorem , 1978 .

[3]  E. Dynkin Sufficient Statistics and Extreme Points , 1978 .

[4]  J. Kingman,et al.  Mathematics of genetic diversity , 1982 .

[5]  Tail behavior of birth-and-death and stochastically monotone processes , 1983 .

[6]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .

[7]  D. Aldous Exchangeability and related topics , 1985 .

[8]  S. Kerov Combinatorial examples in the theory of AF-algebras , 1992 .

[9]  Sergei V. Kerov,et al.  The Boundary of Young Lattice and Random Young Tableaux , 1994, Formal Power Series and Algebraic Combinatorics.

[10]  E. G. Tsylova Probabilistic methods for obtaining asymptotic formulas for generalized Stirling numbers , 1995 .

[11]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[12]  V. A. Lemenkov,et al.  An automatic system for counting blood cells , 1996 .

[13]  A. Vershik,et al.  Statistical mechanics of combinatorial partitions, and their limit shapes , 1996 .

[14]  Grigori Olshanski,et al.  The boundary of the Young graph with Jack edge multiplicities , 1997 .

[15]  Alexander Gnedin,et al.  The representation of composition structures , 1997 .

[16]  Jim Pitman,et al.  Partition structures derived from Brownian motion and stable subordinators , 1997 .

[17]  J. Pitman Brownian Motion, Bridge, Excursion, and Meander Characterized by Sampling at Independent Uniform Times , 1999 .

[18]  Grigori Olshanski,et al.  Harmonic Functions on Multiplicative Graphs and Interpolation Polynomials , 2000, Electron. J. Comb..

[19]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[20]  Gilbert Labelle,et al.  Stirling numbers interpolation using permutations with forbidden subsequences , 2002, Discret. Math..

[21]  J. Pitman,et al.  Regenerative composition structures , 2003, math/0307307.

[22]  J. Pitman Poisson-Kingman partitions , 2002, math/0210396.

[23]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[24]  J. Gabarró,et al.  Analytic urns , 2004, math/0407098.

[25]  S. Kerov,et al.  Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis , 2003 .

[26]  Yuval Roichman,et al.  Statistics on wreath products and generalized binomial-stirling numbers , 2004 .

[27]  Dudley Stark LOGARITHMIC COMBINATORIAL STRUCTURES: A PROBABILISTIC APPROACH (EMS Monographs in Mathematics) By R ICHARD A RRATIA , A. D. B ARBOUR and S IMON T AVARÉ : 363 pp., €69.00, ISBN 3-03719-000-0 (European Mathematical Society, 2003) , 2005 .

[28]  S. Kerov Coherent random allocations, and the Ewens-Pitman formula , 2006 .