Planar catadioptric stereo: geometry and calibration

By using mirror reflections of a scene, stereo images can be captured with a single camera (catadioptric stereo). Single camera stereo provides both geometric and radiometric advantages over traditional two camera stereo. In this paper we discuss the geometry and calibration of catadioptric stereo with two planar mirrors and show how the relative orientation, the epipolar geometry and the estimation of the focal length are constrained by planar motion. In addition, we have implemented a real-time system which demonstrates the viability of stereo with mirrors as an alternative to traditional two camera stereo.

[1]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[2]  Frederic Devernay,et al.  Système de miroirs pour la stéréoscopie , 1995 .

[3]  Laurent Moll,et al.  Real time correlation-based stereo: algorithm, implementations and applications , 1993 .

[4]  Richard I. Hartley,et al.  Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.

[5]  Martin Neil Armstrong,et al.  Self-Calibration from Image Sequences , 1996 .

[6]  Rajiv Gupta,et al.  Computing matched-epipolar projections , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  W. Teoh,et al.  An inexpensive stereoscopic vision system for robots , 1984, ICRA.

[8]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[9]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[11]  Shree K. Nayar,et al.  Stereo with mirrors , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[12]  Amnon Shashua,et al.  Omni-Rig sensors: what can be done with a non-rigid vision platform? , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[13]  David W. Murray Recovering Range Using Virtual Multicamera Stereo , 1995, Comput. Vis. Image Underst..

[14]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[15]  Anup Basu,et al.  Panoramic stereo , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[16]  Andrew Zisserman,et al.  Self-Calibration from Image Triplets , 1996, ECCV.

[17]  Tomás Svoboda,et al.  Epipolar Geometry of Panoramic Cameras , 1998, ECCV.

[18]  O. Faugeras,et al.  Camera Self-Calibration from Video Sequences: the Kruppa Equations Revisited , 1996 .

[19]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[20]  Bill Triggs,et al.  Autocalibration and the absolute quadric , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Thierry Viéville,et al.  Using Singular Displacements for Uncalibrated Monocular Visual Systems , 1996, ECCV.

[22]  Murat Draman,et al.  A Robotic Vision System , 1984 .

[23]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[24]  Yutaka Fukui,et al.  3-D Reconstruction Using Mirror Images Based on a Plane Symmetry Recovering Method , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  A. Ardeshir Goshtasby,et al.  Design of a single-lens stereo camera system , 1993, Pattern Recognit..

[26]  R. Y. Tsai,et al.  An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision , 1986, CVPR 1986.

[27]  Masayuki Inaba,et al.  A stereo viewer based on a single camera with view-control mechanisms , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).