The Physiology and Computation of Pyramidal Neurons

A variety of neural signals have been measured as correlates to consciousness. In particular, late current sinks in layer 1, distributed activity across the cortex, and feedback processing have all been implicated. What are the physiological underpinnings of these signals? What computational role do they play in the brain? Why do they correlate to consciousness? This thesis begins to answer these questions by focusing on the pyramidal neuron. As the primary communicator of long-range feedforward and feedback signals in the cortex, the pyramidal neuron is set up to play an important role in establishing distributed representations. Additionally, the dendritic extent, reaching layer 1, is well situated to receive feedback inputs and contribute to current sinks in the upper layers. An investigation of pyramidal neuron physiology is therefore necessary to understand how the brain creates, and potentially uses, the neural correlates of consciousness. An important part of this thesis will be in establishing the computational role that dendritic physiology plays. In order to do this, a combined experimental and modeling approach is used. This thesis beings with single-cell experiments in layer 5 and layer 2/3 pyramidal neurons. In both cases, dendritic nonlinearities are characterized and found to be integral regulators of neural output. Particular attention is paid to calcium spikes and NMDA spikes, which both exist in the apical dendrites, considerable distances from the spike initiation zone. These experiments are then used to create detailed multicompartmental models. These models are used to test hypothesis regarding spatial distribution of membrane channels, to quantify the effects of certain experimental manipulations, and to establish the computational properties of the single cell. We find that the pyramidal neuron physiology can carry out a coincidence detection mechanism. Further abstraction of these models reveals potential mechanisms for spike time control, frequency modulation, and tuning. Finally, a set of experiments are carried out to establish the effect of long-range feedback inputs onto the pyramidal neuron. A final discussion then explores a potential way in which the physiology of pyramidal neurons can establish distributed representations, and contribute to consciousness.

[1]  Anthony G. Hudetz,et al.  Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat , 2005, Neuroscience Letters.

[2]  T J Gawne,et al.  Activity of primate V1 cortical neurons during blinks. , 2000, Journal of neurophysiology.

[3]  S. Dehaene,et al.  Converging Intracranial Markers of Conscious Access , 2009, PLoS biology.

[4]  M. Häusser,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010, Science.

[5]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[6]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[7]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[8]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[9]  K. Jellinger Cortex and Mind. Unifying Cognition , 2003 .

[10]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[11]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[12]  D H Hubel,et al.  Visual responses in V1 of freely viewing monkeys. , 1996, Cold Spring Harbor symposia on quantitative biology.

[13]  Kenji Mizuseki,et al.  Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model , 2013, Front. Comput. Neurosci..

[14]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[15]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[16]  Matthew W Self,et al.  Different glutamate receptors convey feedforward and recurrent processing in macaque V1 , 2012, Proceedings of the National Academy of Sciences.

[17]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[18]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[19]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[20]  Caspar M. Schwiedrzik,et al.  Expectations Change the Signatures and Timing of Electrophysiological Correlates of Perceptual Awareness , 2011, The Journal of Neuroscience.

[21]  Victor A. F. Lamme,et al.  Figure-ground activity in primary visual cortex is suppressed by anesthesia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Markram,et al.  Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Corrigendum: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition , 2013, Nature Neuroscience.

[24]  John H. R. Maunsell,et al.  On the relationship between synaptic input and spike output jitter in individual neurons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Fuster The cognit: a network model of cortical representation. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[26]  R. E. Taylor Effect of procaine on electrical properties of squid axon membrane. , 1959, The American journal of physiology.

[27]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[28]  A. Walker Aftereffects of Brain Injuries in War, Their Evaluation and Treatment, the Application of Psychologic Methods in the Clinic , 1943 .

[29]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[30]  B. Sakmann,et al.  High frequency action potential bursts (≥ 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex , 2008, The Journal of physiology.

[31]  Srdjan D Antic,et al.  Voltage and calcium transients in basal dendrites of the rat prefrontal cortex , 2007, The Journal of physiology.

[32]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[33]  M. Larkum,et al.  Properties of Layer 6 Pyramidal Neuron Apical Dendrites , 2010, The Journal of Neuroscience.

[34]  R W Guillery,et al.  The role of the thalamus in the flow of information to the cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  C. Koch,et al.  A framework for consciousness , 2003, Nature Neuroscience.

[36]  B. Breitmeyer,et al.  Recent models and findings in visual backward masking: A comparison, review, and update , 2000, Perception & psychophysics.

[37]  R K Wong,et al.  Intracellular QX-314 blocks the hyperpolarization-activated inward current Iq in hippocampal CA1 pyramidal cells. , 1995, Journal of neurophysiology.

[38]  Yang Dan,et al.  Interneuron subtypes and orientation tuning , 2014, Nature.

[39]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[40]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[41]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[42]  Chi-Hung Juan,et al.  Feedback to V1: a reverse hierarchy in vision , 2003, Experimental Brain Research.

[43]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[44]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[45]  Bartlett W. Mel The Clusteron: Toward a Simple Abstraction for a Complex Neuron , 1991, NIPS.

[46]  Larissa Albantakis,et al.  From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0 , 2014, PLoS Comput. Biol..

[47]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[48]  D. Ringach,et al.  Predictions of a Recurrent Model of Orientation , 1997 .

[49]  Masanori Murayama,et al.  Inhibitory Regulation of Dendritic Activity in vivo , 2012, Front. Neural Circuits.

[50]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[51]  J. Seamans,et al.  Contributions of Voltage-Gated Ca2+ Channels in the Proximal versus Distal Dendrites to Synaptic Integration in Prefrontal Cortical Neurons , 1997, The Journal of Neuroscience.

[52]  J. Harlow Passage of an Iron Rod Through the Head , 1999 .

[53]  Boris S. Gutkin,et al.  Democracy-Independence Trade-Off in Oscillating Dendrites and Its Implications for Grid Cells , 2010, Neuron.

[54]  L. Cauller,et al.  Cerebral cortical somatosensory evoked responses, multiple unit activity and current source-densities: their interrelationships and significance to somatic sensation as revealed by stimulation of the awake monkey's hand , 2004, Experimental Brain Research.

[55]  G. Edelman Neural Darwinism: Selection and reentrant signaling in higher brain function , 1993, Neuron.

[56]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[57]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[58]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[60]  H. Markram,et al.  Information Processing with Frequency-Dependent Synaptic Connections , 1998, Neurobiology of Learning and Memory.

[61]  J. Pearce,et al.  Marie-Jean-Pierre Flourens (1794–1867) and Cortical Localization , 2009, European Neurology.

[62]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[63]  Jacob Jolij,et al.  Figure–ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study , 2005, Neuroreport.

[64]  Vassilis Cutsuridis,et al.  Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes , 2013, Front. Syst. Neurosci..

[65]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[66]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[67]  K. H. Britten,et al.  Power spectrum analysis of bursting cells in area MT in the behaving monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[69]  J. McFadden Johnjoe McFadden The Conscious Electromagnetic Information ( Cemi ) Field Theory The Hard Problem Made Easy ? , 2002 .

[70]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[71]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[72]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[73]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[74]  F. Hayek Elementist Going Up. (Book Reviews: The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology) , 1953 .

[75]  K. Lashley Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain , 1965 .

[76]  Hazel A. Collins,et al.  Presynaptic Induction and Expression of Timing-Dependent Long-Term Depression Demonstrated by Compartment-Specific Photorelease of a Use-Dependent NMDA Receptor Antagonist , 2011, The Journal of Neuroscience.

[77]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[79]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[80]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[81]  D. Hubel Cortical neurobiology: a slanted historical perspective. , 1982, Annual review of neuroscience.

[82]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[83]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[84]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[85]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[86]  P. Poirazi,et al.  Coding and decoding with dendrites , 2014, Journal of Physiology-Paris.

[87]  Jude F. Mitchell,et al.  Attentional Modulation of Firing Rate Varies with Burstiness across Putative Pyramidal Neurons in Macaque Visual Area V4 , 2011, The Journal of Neuroscience.

[88]  R. F. Thompson,et al.  The search for the engram. , 1976, The American psychologist.

[89]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 2004, Journal of Computational Neuroscience.

[90]  Matthew E Larkum,et al.  Inhibition of dendritic Ca2+ spikes by GABAB receptors in cortical pyramidal neurons is mediated by a direct Gi/o‐βγ‐subunit interaction with Cav1 channels , 2013, The Journal of physiology.

[91]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[92]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[94]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[95]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[96]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[97]  S. Pockett The Electromagnetic Field Theory of Consciousness A Testable Hypothesis about the Characteristics of Conscious as Opposed to Non-conscious Fields , 2011 .

[98]  S. Dehaene,et al.  Information Sharing in the Brain Indexes Consciousness in Noncommunicative Patients , 2013, Current Biology.

[99]  Adam G. Carter,et al.  GABAB Receptor Modulation of Voltage-Sensitive Calcium Channels in Spines and Dendrites , 2011, The Journal of Neuroscience.

[100]  B. Connors,et al.  Effects of local anesthetic QX-314 on the membrane properties of hippocampal pyramidal neurons. , 1982, The Journal of pharmacology and experimental therapeutics.

[101]  R. J. Sayer,et al.  Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[102]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[103]  Hysell V. Oviedo,et al.  Boosting of neuronal firing evoked with asynchronous and synchronous inputs to the dendrite , 2002, Nature Neuroscience.

[104]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[105]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[106]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[107]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[108]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[109]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[110]  Steven Horwitz,et al.  From The Sensory Order to the Liberal Order: Hayek's Non-rationalist Liberalism , 2000 .

[111]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[112]  Oren Sagher,et al.  Functional mapping. , 2013, Journal of neurosurgery.

[113]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[114]  D. Lindsley,et al.  Attention, Vigilance, and Cortical Evoked-Potentials in Humans , 1964, Science.

[115]  C. Petersen,et al.  Membrane potential correlates of sensory perception in mouse barrel cortex , 2013, Nature Neuroscience.

[116]  R. Andrade Blockade of neurotransmitter-activated K+ conductance by QX-314 in the rat hippocampus. , 1991, European journal of pharmacology.

[117]  L. Maffei,et al.  Two firing patterns in the discharge of complex cells encoding different attributes of the visual stimulus , 2004, Experimental Brain Research.

[118]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[119]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[120]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[121]  B. Sakmann,et al.  Dendritic Spikes in Apical Dendrites of Neocortical Layer 2/3 Pyramidal Neurons , 2007, The Journal of Neuroscience.

[122]  Henry Railo,et al.  Tracking the processes behind conscious perception: A review of event-related potential correlates of visual consciousness , 2011, Consciousness and Cognition.

[123]  Victor A. F. Lamme Blindsight: the role of feedforward and feedback corticocortical connections. , 2001, Acta psychologica.

[124]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[125]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[126]  Mika Koivisto,et al.  Event-related brain potential correlates of visual awareness , 2010, Neuroscience & Biobehavioral Reviews.

[127]  J. Lund,et al.  Sensory processing in the mammalian brain : neural substrates and experimental strategies , 1989 .

[128]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[129]  Signe Vangkilde,et al.  The earliest electrophysiological correlate of visual awareness? , 2008, Brain and Cognition.

[130]  Urit Gordon,et al.  Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons , 2006, The Journal of Neuroscience.

[131]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[132]  Stuart R. Hameroff,et al.  QUANTUM COHERENCE IN MICROTUBULES: A NEURAL BASIS FOR EMERGENT CONSCIOUSNESS? 1 , 1994 .

[133]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[134]  Grady Booch,et al.  The Human Experience , 2012, IEEE Software.

[135]  Bruce J. Caldwell Some Reflections on F.A. Hayek's The Sensory Order , 2004 .