Advances in Data-Driven Analysis and Synthesis of 3D Indoor Scenes

This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks -- 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output, etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.

[1]  Jingyu Liu,et al.  CLIP-Layout: Style-Consistent Indoor Scene Synthesis with Semantic Furniture Embedding , 2023, arXiv.org.

[2]  Jeong Joon Park,et al.  LEGO-Net: Learning Regular Rearrangements of Objects in Rooms , 2023, ArXiv.

[3]  Vittorio Ferrari,et al.  Vid2CAD: CAD Model Alignment Using Multi-View Constraints From Videos , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  K. Jia,et al.  RGBD2: Generative Scene Synthesis via Incremental View Inpainting Using RGBD Diffusion Models , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Yu Jiang,et al.  NeuralRoom , 2022, ACM Trans. Graph..

[6]  Ben Poole,et al.  DreamFusion: Text-to-3D using 2D Diffusion , 2022, ICLR.

[7]  S. Fidler,et al.  GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images , 2022, NeurIPS.

[8]  Cewu Lu,et al.  Correlation Field for Boosting 3D Object Detection in Structured Scenes , 2022, AAAI.

[9]  Georgia Gkioxari,et al.  Learning 3D Object Shape and Layout without 3D Supervision , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  David J. Fleet,et al.  Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding , 2022, NeurIPS.

[11]  Jiajun Wu,et al.  Rotationally Equivariant 3D Object Detection , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Prafulla Dhariwal,et al.  Hierarchical Text-Conditional Image Generation with CLIP Latents , 2022, ArXiv.

[13]  Xinwang Liu,et al.  DisARM: Displacement Aware Relation Module for 3D Detection , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  M. Pomplun,et al.  Mood-Driven Colorization of Virtual Indoor Scenes , 2022, IEEE Transactions on Visualization and Computer Graphics.

[15]  M. Nießner,et al.  ROCA: Robust CAD Model Retrieval and Alignment from a Single Image , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Federico Tombari,et al.  Neural Fields in Visual Computing and Beyond , 2021, Comput. Graph. Forum.

[17]  James M. Rehg,et al.  Ego4D: Around the World in 3,000 Hours of Egocentric Video , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Hang Chu,et al.  CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Yi Ma,et al.  Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[20]  Karl D. D. Willis,et al.  TextCraft: Zero-Shot Generation of High-Fidelity and Diverse Shapes from Text , 2022, ArXiv.

[21]  Erion Plaku,et al.  Joint computational design of workspaces and workplans , 2021, ACM Trans. Graph..

[22]  Jyh-Ming Lien,et al.  Synthesizing scene-aware virtual reality teleport graphs , 2021, ACM Trans. Graph..

[23]  Sanja Fidler,et al.  ATISS: Autoregressive Transformers for Indoor Scene Synthesis , 2021, NeurIPS.

[24]  Ignas Budvytis,et al.  Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Patrick Labatut,et al.  Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  Anelia Angelova,et al.  Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval from a Single Image , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Bin Zhou,et al.  Indoor Scene Generation from a Collection of Semantic-Segmented Depth Images , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Mingqiang Wei,et al.  Adaptive Graph Convolution for Point Cloud Analysis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Kalyan Sunkavalli,et al.  OpenRooms: An Open Framework for Photorealistic Indoor Scene Datasets , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Le Hui,et al.  SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network , 2021, AAAI.

[31]  Nitish Srivastava,et al.  Unconstrained Scene Generation with Locally Conditioned Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  Zheng Zhang,et al.  Group-Free 3D Object Detection via Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[33]  M. Pollefeys,et al.  Holistic 3D Scene Understanding from a Single Image with Implicit Representation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[35]  Chandan Yeshwanth,et al.  SceneFormer: Indoor Scene Generation with Transformers , 2020, 2021 International Conference on 3D Vision (3DV).

[36]  Varun Jampani,et al.  Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[37]  Hao Zhang,et al.  LayoutGMN: Neural Graph Matching for Structural Layout Similarity , 2020, Computer Vision and Pattern Recognition.

[38]  Peng Liu,et al.  3D-FRONT: 3D Furnished Rooms with layOuts and semaNTics , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Mike Roberts,et al.  Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Klaus Dietmayer,et al.  Point Transformer , 2020, IEEE Access.

[41]  Lin Gao,et al.  3D-FUTURE: 3D Furniture Shape with TextURE , 2020, International Journal of Computer Vision.

[42]  Philipp Krähenbühl,et al.  Center-based 3D Object Detection and Tracking , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Liang Zhang,et al.  Relation Graph Network for 3D Object Detection in Point Clouds , 2019, IEEE Transactions on Image Processing.

[44]  Roozbeh Mottaghi,et al.  Rearrangement: A Challenge for Embodied AI , 2020, ArXiv.

[45]  Balaji Krishnamurthy,et al.  Form2Seq : A Framework for Higher-Order Form Structure Extraction , 2020, EMNLP.

[46]  Angela Dai,et al.  Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve , 2020, ECCV.

[47]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[48]  Haitao Yang,et al.  H3DNet: 3D Object Detection Using Hybrid Geometric Primitives , 2020, ECCV.

[49]  Enrico Gobbetti,et al.  State‐of‐the‐art in Automatic 3D Reconstruction of Structured Indoor Environments , 2020, Comput. Graph. Forum.

[50]  Hao Zhang,et al.  Graph2Plan , 2020, ACM Trans. Graph..

[51]  Jun Wang,et al.  MLCVNet: Multi-Level Context VoteNet for 3D Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Federico Tombari,et al.  Learning 3D Semantic Scene Graphs From 3D Indoor Reconstructions , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Angela Dai,et al.  SceneCAD: Predicting Object Alignments and Layouts in RGB-D Scans , 2020, ECCV.

[54]  Vijay Badrinarayanan,et al.  Atlas: End-to-End 3D Scene Reconstruction from Posed Images , 2020, ECCV.

[55]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[56]  Xiaoguang Han,et al.  Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Leonidas J. Guibas,et al.  ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Ming-Hsuan Yang,et al.  Neural Design Network: Graphic Layout Generation with Constraints , 2019, European Conference on Computer Vision.

[59]  Thomas Funkhouser,et al.  Local Deep Implicit Functions for 3D Shape , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Omri Ben-Eliezer,et al.  READ: Recursive Autoencoders for Document Layout Generation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[61]  Zihan Zhou,et al.  Structured3D: A Large Photo-realistic Dataset for Structured 3D Modeling , 2019, ECCV.

[62]  Chongyang Ma,et al.  Deep Generative Modeling for Scene Synthesis via Hybrid Representations , 2018, ACM Trans. Graph..

[63]  Dipu Manandhar,et al.  Learning Structural Similarity of User Interface Layouts Using Graph Networks , 2020, ECCV.

[64]  Rudolph Triebel,et al.  3D Scene Reconstruction from a Single Viewport , 2020, ECCV.

[65]  Kai Xu,et al.  Learning Generative Models of 3D Structures , 2020, Eurographics.

[66]  Rui Tang,et al.  Data-driven interior plan generation for residential buildings , 2019, ACM Trans. Graph..

[67]  Matthias Nießner,et al.  RIO: 3D Object Instance Re-Localization in Changing Indoor Environments , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[68]  Angel X. Chang,et al.  PlanIT: planning and instantiating indoor scenes with relation graph and spatial prior networks , 2019, ACM Trans. Graph..

[69]  Michael Goesele,et al.  The Replica Dataset: A Digital Replica of Indoor Spaces , 2019, ArXiv.

[70]  Matthias Nießner,et al.  End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[71]  Jitendra Malik,et al.  Mesh R-CNN , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[72]  Chi-Wing Fu,et al.  PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Pushmeet Kohli,et al.  Graph Matching Networks for Learning the Similarity of Graph Structured Objects , 2019, ICML.

[74]  Leonidas J. Guibas,et al.  Deep Hough Voting for 3D Object Detection in Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[75]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[76]  Bernard Ghanem,et al.  DeepGCNs: Can GCNs Go As Deep As CNNs? , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[77]  Juho Kannala,et al.  CubiCasa5K: A Dataset and an Improved Multi-Task Model for Floorplan Image Analysis , 2019, SCIA.

[78]  Matthias Nießner,et al.  3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[79]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[81]  Peter Wonka,et al.  DuLa-Net: A Dual-Projection Network for Estimating Room Layouts From a Single RGB Panorama , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Matthias Nießner,et al.  Scan2CAD: Learning CAD Model Alignment in RGB-D Scans , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Daniel Cohen-Or,et al.  GRAINS , 2018, ACM Trans. Graph..

[84]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[85]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[86]  Peter Wonka,et al.  High Quality Monocular Depth Estimation via Transfer Learning , 2018, ArXiv.

[87]  Leonidas J. Guibas,et al.  Language-driven synthesis of 3D scenes from scene databases , 2018, ACM Trans. Graph..

[88]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[89]  Song-Chun Zhu,et al.  Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation , 2018, NeurIPS.

[90]  Wenbin Li,et al.  InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset , 2018, BMVC.

[91]  Balazs Kovacs,et al.  Learning Material-Aware Local Descriptors for 3D Shapes , 2018, 2018 International Conference on 3D Vision (3DV).

[92]  Song-Chun Zhu,et al.  Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image , 2018, ECCV.

[93]  Ariel Shamir,et al.  Predictive and generative neural networks for object functionality , 2018, ACM Trans. Graph..

[94]  Angel X. Chang,et al.  Deep convolutional priors for indoor scene synthesis , 2018, ACM Trans. Graph..

[95]  Graham Fyffe,et al.  Stereo Magnification: Learning View Synthesis using Multiplane Images , 2018, ArXiv.

[96]  Matthias Nießner,et al.  3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation , 2018, ECCV.

[97]  Derek Hoiem,et al.  LayoutNet: Reconstructing the 3D Room Layout from a Single RGB Image , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[98]  Mathieu Aubry,et al.  A Papier-Mache Approach to Learning 3D Surface Generation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[99]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[100]  Ariel Shamir,et al.  Learning to predict part mobility from a single static snapshot , 2017, ACM Trans. Graph..

[101]  Matthias Nießner,et al.  Matterport3D: Learning from RGB-D Data in Indoor Environments , 2017, 2017 International Conference on 3D Vision (3DV).

[102]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[103]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[104]  Tomasz Malisiewicz,et al.  RoomNet: End-to-End Room Layout Estimation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[105]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[106]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[107]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Thomas Brox,et al.  Orientation-boosted Voxel Nets for 3D Object Recognition , 2016, BMVC.

[109]  Yinda Zhang,et al.  DeepContext: Context-Encoding Neural Pathways for 3D Holistic Scene Understanding , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[110]  Rui Ma,et al.  Action-driven 3D indoor scene evolution , 2016, ACM Trans. Graph..

[111]  Taku Komura,et al.  Relationship templates for creating scene variations , 2016, ACM Trans. Graph..

[112]  Duc Thanh Nguyen,et al.  SceneNN: A Scene Meshes Dataset with aNNotations , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[113]  Ariel Shamir,et al.  Learning how objects function via co-analysis of interactions , 2016, ACM Trans. Graph..

[114]  Matthias Nießner,et al.  PiGraphs , 2016, ACM Trans. Graph..

[115]  Silvio Savarese,et al.  DeLay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Erik B. Sudderth,et al.  Three-Dimensional Object Detection and Layout Prediction Using Clouds of Oriented Gradients , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Demetri Terzopoulos,et al.  The Clutterpalette: An Interactive Tool for Detailing Indoor Scenes , 2016, IEEE Transactions on Visualization and Computer Graphics.

[119]  Roberto Cipolla,et al.  Understanding RealWorld Indoor Scenes with Synthetic Data , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[120]  Jianxiong Xiao,et al.  Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[122]  Svetlana Lazebnik,et al.  Learning Informative Edge Maps for Indoor Scene Layout Prediction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[123]  Matthias Nießner,et al.  Activity-centric scene synthesis for functional 3D scene modeling , 2015, ACM Trans. Graph..

[124]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[125]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[126]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Surya Ganguli,et al.  Deep Unsupervised Learning using Nonequilibrium Thermodynamics , 2015, ICML.

[128]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  Niloy J. Mitra,et al.  Creating consistent scene graphs using a probabilistic grammar , 2014, ACM Trans. Graph..

[130]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[131]  Angel X. Chang,et al.  Learning Spatial Knowledge for Text to 3D Scene Generation , 2014, EMNLP.

[132]  Jianxiong Xiao,et al.  Sliding Shapes for 3D Object Detection in Depth Images , 2014, ECCV.

[133]  Rui Ma,et al.  Organizing heterogeneous scene collections through contextual focal points , 2014, ACM Trans. Graph..

[134]  Taku Komura,et al.  Indexing 3D Scenes Using the Interaction Bisector Surface , 2014, ACM Trans. Graph..

[135]  Cheng Liang,et al.  Mobility‐Trees for Indoor Scenes Manipulation , 2014, Comput. Graph. Forum.

[136]  Sanja Fidler,et al.  Holistic Scene Understanding for 3D Object Detection with RGBD Cameras , 2013, 2013 IEEE International Conference on Computer Vision.

[137]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[138]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[139]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[140]  Pat Hanrahan,et al.  Example-based synthesis of 3D object arrangements , 2012, ACM Trans. Graph..

[141]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[142]  Yun Jiang,et al.  Learning Object Arrangements in 3D Scenes using Human Context , 2012, ICML.

[143]  Pat Hanrahan,et al.  Characterizing structural relationships in scenes using graph kernels , 2011, ACM Trans. Graph..

[144]  Maneesh Agrawala,et al.  Interactive furniture layout using interior design guidelines , 2011, ACM Trans. Graph..

[145]  Chi-Keung Tang,et al.  Make it home: automatic optimization of furniture arrangement , 2011, ACM Trans. Graph..

[146]  Derek Hoiem,et al.  Recovering the spatial layout of cluttered rooms , 2009, 2009 IEEE 12th International Conference on Computer Vision.