Robot navigation with model predictive equilibrium point control

An autonomous vehicle intended to carry passengers must be able to generate trajectories on-line that are safe, smooth and comfortable. Here, we propose a strategy for robot navigation in a structured, dynamic indoor environment, where the robot reasons about the near future and makes a locally optimal decision at each time step.

[1]  Benjamin Kuipers,et al.  A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment , 2011, 2011 IEEE International Conference on Robotics and Automation.

[2]  Benjamin Kuipers,et al.  Factoring the Mapping Problem: Mobile Robot Map-building in the Hybrid Spatial Semantic Hierarchy , 2010, Int. J. Robotics Res..

[3]  Kurt Konolige,et al.  A gradient method for realtime robot control , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[4]  Sebastian Thrun,et al.  Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments , 2010, Int. J. Robotics Res..

[5]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[6]  Tao Geng,et al.  Planar Biped Walking With an Equilibrium Point Controller and State Machines , 2010, IEEE/ASME Transactions on Mechatronics.

[7]  Herbert G. Tanner,et al.  Randomized Receding Horizon Navigation , 2010, IEEE Transactions on Automatic Control.

[8]  Tor Arne Johansen,et al.  Nonlinear Model Predictive Control , 2012 .

[9]  Joel W. Burdick,et al.  Probabilistic Collision Checking With Chance Constraints , 2011, IEEE Transactions on Robotics.

[10]  Eric W. Frew Receding Horizon Control Using Random Search for UAV Navigation with Passive, Non-cooperative Sensing , 2005 .

[11]  Paolo Fiorini,et al.  Navigating a Robotic Wheelchair in a Railway Station during Rush Hour , 1999, Int. J. Robotics Res..

[12]  Michael Himmelsbach,et al.  Driving with tentacles: Integral structures for sensing and motion , 2008 .

[13]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[14]  J. How,et al.  Receding horizon path planning with implicit safety guarantees , 2004, Proceedings of the 2004 American Control Conference.

[15]  Advait Jain,et al.  Pulling open novel doors and drawers with equilibrium point control , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[16]  Ross A. Knepper,et al.  Real-time informed path sampling for motion planning search , 2012, Int. J. Robotics Res..

[17]  Andreas Nüchter,et al.  High Speed Differential Drive Mobile Robot Path Following Control With Bounded Wheel Speed Commands , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Petter Ögren,et al.  A convergent dynamic window approach to obstacle avoidance , 2005, IEEE Transactions on Robotics.

[19]  Mindy F Levin,et al.  The equilibrium-point hypothesis--past, present and future. , 2009, Advances in experimental medicine and biology.

[20]  Han-Pang Huang,et al.  Robot Motion Planning in Dynamic Uncertain Environments , 2011, Adv. Robotics.

[21]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[22]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[23]  Benjamin Kuipers,et al.  High performance control for graceful motion of an intelligent wheelchair , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  Dominique Gruyer,et al.  A fast Monte Carlo algorithm for collision probability estimation , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[25]  Alonzo Kelly,et al.  Receding Horizon Model-Predictive Control for Mobile Robot Navigation of Intricate Paths , 2009, FSR.

[26]  L. Singh,et al.  Trajectory generation for a UAV in urban terrain, using nonlinear MPC , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[27]  Tarek Hamel,et al.  PERFORMANCE IMPROVEMENT OF AN ADAPTIVE CONTROLLER USING MODEL PREDICTIVE CONTROL : APPLICATION TO AN UAV MODEL , 2006 .

[28]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[29]  Shilpa Gulati,et al.  A framework for characterization and planning of safe, comfortable, and customizable motion of assistive mobile robots , 2011 .

[30]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[31]  Magnus Egerstedt,et al.  Adaptive look-ahead for robotic navigation in unknown environments , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Ross A. Knepper,et al.  Path diversity is only part of the problem , 2009, 2009 IEEE International Conference on Robotics and Automation.

[33]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[34]  Steven M. LaValle,et al.  Planning algorithms , 2006 .