The Potential of Hybrid Mechanistic/Data‐Driven Approaches for Reduced Dynamic Modeling: Application to Distillation Columns

[1]  P. Seferlis,et al.  Optimization of distillation units using collocation models , 1994 .

[2]  Alexander Mitsos,et al.  Reduced dynamic modeling approach for rectification columns based on compartmentalization and artificial neural networks , 2019, AIChE Journal.

[3]  Michael Baldea,et al.  Optimal demand response scheduling of an industrial air separation unit using data-driven dynamic models , 2019, Comput. Chem. Eng..

[4]  Michael Baldea,et al.  Integrated production scheduling and process control: A systematic review , 2014, Comput. Chem. Eng..

[5]  A. Peschel,et al.  Pressure-driven dynamic simulation of start up and shutdown procedures of distillation columns in air separation units , 2019, Chemical Engineering Research and Design.

[6]  Alexander Mitsos,et al.  Nonlinear Dynamic Optimization for Improved Load-Shifting Agility of Cryogenic Air Separation Plants , 2018 .

[7]  A. J. Morris,et al.  Artificial neural networks in process engineering , 1991 .

[8]  Alexander Mitsos,et al.  Deterministic Global Process Optimization: Flash Calculations via Artificial Neural Networks , 2019, Computer Aided Chemical Engineering.

[9]  Thomas F. Edgar,et al.  Improvements in dynamic compartmental modeling for distillation , 1991 .

[10]  Manfred Morari,et al.  Simulation of fractionation by orthogonal collocation , 1985 .

[11]  Selen Cremaschi,et al.  Adaptive sequential sampling for surrogate model generation with artificial neural networks , 2014, Comput. Chem. Eng..

[12]  Iftekhar A. Karimi,et al.  Smart Sampling Algorithm for Surrogate Model Development , 2017, Comput. Chem. Eng..

[13]  Alexander Mitsos,et al.  Economic Nonlinear Model Predictive Control for Flexible Operation of Air Separation Units , 2018 .

[14]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[15]  Huajiang Huang,et al.  A review of separation technologies in current and future biorefineries , 2008 .

[16]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[17]  Wolfgang R. Huster,et al.  Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks , 2019, Comput. Chem. Eng..

[18]  Norbert Asprion,et al.  Modeling, Simulation, and Optimization 4.0 for a Distillation Column , 2020 .

[19]  Sebastian Engell,et al.  Surrogate Modeling of Fugacity Coefficients Using Adaptive Sampling , 2019, Industrial & Engineering Chemistry Research.

[20]  Alexander Mitsos,et al.  Economic nonlinear model predictive control using hybrid mechanistic data-driven models for optimal operation in real-time electricity markets: In-silico application to air separation processes , 2019 .

[21]  Alexander Mitsos,et al.  A wave propagation approach for reduced dynamic modeling of distillation columns: Optimization and control , 2020 .

[22]  Wolfgang Marquardt NONLINEAR MODEL REDUCTION FOR BINARY DISTILLATION , 1986 .

[23]  G. J. Harmsen,et al.  Reactive distillation: The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation , 2007 .

[24]  Dale E. Seborg,et al.  Dyanmic compartmental models for separation processes , 1986 .

[25]  S. Skogestad,et al.  Reduced distillation models via stage aggregation , 2010 .

[26]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[27]  Alexander Mitsos,et al.  A flexible air separation process: 2. Optimal operation using economic model predictive control , 2019, AIChE Journal.

[28]  Duncan A. Mellichamp,et al.  A unified derivation and critical review of modal approaches to model reduction , 1982 .

[29]  Wolfgang R. Huster,et al.  Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck , 2018 .

[30]  Michael Bortz,et al.  Gray-Box Modeling for the Optimization of Chemical Processes , 2018, Chemie Ingenieur Technik.

[31]  Michael Baldea,et al.  Optimal Process Operations in Fast-Changing Electricity Markets: Framework for Scheduling with Low-Order Dynamic Models and an Air Separation Application , 2016 .

[32]  Christopher L.E. Swartz,et al.  Preemptive dynamic operation of cryogenic air separation units , 2017 .

[33]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[34]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[35]  W. Luyben,et al.  Improving Agility of Cryogenic Air Separation Plants , 2008 .

[36]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[37]  Lorenz T. Biegler,et al.  Dynamic optimization with complementarity constraints: Smoothing for direct shooting , 2020, Comput. Chem. Eng..

[38]  Leon Urbas,et al.  Was den Digitalen Zwilling zum genialen Kompagnon macht , 2020 .

[39]  Sigurd Skogestad,et al.  Computational performance of aggregated distillation models , 2009, Comput. Chem. Eng..

[40]  Sebastian Engell,et al.  Surrogate modeling of phase equilibrium calculations using adaptive sampling , 2019, Comput. Chem. Eng..

[41]  Nicolas M. Kaiser,et al.  Integrated reaction-extraction process for the hydroformylation of long-chain alkenes with a homogeneous catalyst , 2017, Comput. Chem. Eng..

[42]  Lorenz T. Biegler,et al.  An MPEC formulation for dynamic optimization of distillation operations , 2004, Comput. Chem. Eng..

[43]  Jay H. Lee,et al.  Machine learning: Overview of the recent progresses and implications for the process systems engineering field , 2017, Comput. Chem. Eng..

[44]  Kai Sundmacher,et al.  Overview of Surrogate Modeling in Chemical Process Engineering , 2019, Chemie Ingenieur Technik.

[45]  Achim Kienle,et al.  Low-order dynamic models for ideal multicomponent distillation processes using nonlinear wave propagation theory , 2000 .

[46]  Christopher L.E. Swartz,et al.  Dynamic modeling and collocation-based model reduction of cryogenic air separation units , 2016 .

[47]  Morgan T. Kelley,et al.  An MILP framework for optimizing demand response operation of air separation units , 2018, Applied Energy.

[48]  Wolfgang Marquardt,et al.  The validity domain of hybrid models and its application in process optimization , 2007 .

[49]  Christopher L.E. Swartz,et al.  Optimal Dynamic Operation of a High-Purity Air Separation Plant under Varying Market Conditions , 2016 .

[50]  Mohamed Azlan Hussain,et al.  Review of the applications of neural networks in chemical process control - simulation and online implementation , 1999, Artif. Intell. Eng..

[51]  Wolfgang Marquardt,et al.  Wellenausbreitung in verfahrenstechnischen Prozessen , 1989 .

[52]  Massimo Morbidelli,et al.  Performance of collocation models for simulating transient multistage separation units , 1995 .

[53]  Michael Baldea,et al.  Challenges in process optimization for new feedstocks and energy sources , 2018, Comput. Chem. Eng..

[54]  Alexander Mitsos,et al.  Analysis and improvement of dynamic heat exchanger models for nominal and start-up operation , 2019, Energy.

[55]  Pierre Rouchon,et al.  Quality control of binary distillation columns via nonlinear aggregated models , 1991, Autom..

[56]  Andreas Linhart,et al.  An aggregation model reduction method for one-dimensional distributed systems , 2012 .

[57]  Norbert Kockmann,et al.  Digital methods and tools for chemical equipment and plants , 2019, Reaction Chemistry & Engineering.

[58]  Sebastião Feyo de Azevedo,et al.  Hybrid semi-parametric modeling in process systems engineering: Past, present and future , 2014, Comput. Chem. Eng..

[59]  Alexander Mitsos,et al.  Working fluid selection for organic rankine cycles via deterministic global optimization of design and operation , 2020, Optimization and Engineering.

[60]  Babu Joseph,et al.  Reduced‐order steady‐state and dynamic models for separation processes. Part II. Application to nonlinear multicomponent systems , 1983 .

[61]  Lorenz T. Biegler,et al.  Economic NMPC for energy intensive applications with electricity price prediction , 2012 .

[62]  Victor M. Zavala,et al.  Advanced step nonlinear model predictive control for air separation units , 2009 .

[63]  V. Venkatasubramanian The promise of artificial intelligence in chemical engineering: Is it here, finally? , 2018, AIChE Journal.

[64]  Lawrence Megan,et al.  Compartmental modeling of high purity air separation columns , 2005, Comput. Chem. Eng..