Machine Learning to Predict Quasicrystals from Chemical Compositions

Quasicrystals have emerged as a new class of solid-state materials that have long-range order without periodicity, exhibiting rotational symmetries that are disallowed for periodic crystals in most cases. To date, hundreds of new quasicrystals have been found, leading to the discovery of many new and exciting phenomena. However, the pace of the discovery of new quasicrystals has slowed in recent years, largely owing to the lack of clear guiding principles for the synthesis of new quasicrystals. Here, we show that the discovery of new quasicrystals can be accelerated with a simple machine learning workflow. With a list of the chemical compositions of known quasicrystals, approximant crystals, and ordinary crystals, we trained a prediction model to solve the three-class classification task and evaluated its predictability compared to the observed phase diagrams of ternary aluminum systems. The validation experiments strongly support the superior predictive power of machine learning, with the precision and recall of the phase prediction task reaching approximately 0.793 and 0.714, respectively. Furthermore, analyzing the input--output relationships black-boxed into the model, we identified nontrivial empirical equations interpretable by humans that describe conditions necessary for quasicrystal formation.

[1]  Alok Choudhary,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016 .

[2]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[3]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[4]  B. Grushko,et al.  The Al-rich region of the Al–Fe–Mn alloy system , 2015 .

[5]  D. C. Ghosh A NEW SCALE OF ELECTRONEGATIVITY BASED ON ABSOLUTE RADII OF ATOMS , 2005 .

[6]  Santiago Alvarez,et al.  A cartography of the van der Waals territories. , 2013, Dalton transactions.

[7]  K. Tsuda,et al.  Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies , 2018, ACS central science.

[8]  B. Grushko,et al.  A study of the Al–Co–Cr alloy system , 2018 .

[9]  T. Coplen Atomic Weights of the Elements , 2003 .

[10]  C. Dong,et al.  A Study of the Ternary Phase Diagrams of Al—Co with Cu, Ag, and Au. , 2003 .

[11]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[12]  Sebastian Riedel,et al.  Triple-bond covalent radii. , 2005, Chemistry.

[13]  S. Alvarez,et al.  van der Waals radii of noble gases. , 2014, Inorganic chemistry.

[14]  Yoshihiko Yokoyama,et al.  Stable Icosahedral Al–Pd–Mn and Al–Pd–Re Alloys , 1990 .

[15]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[16]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[17]  N. Tamura,et al.  A Contribution to the Al—Pd—Cr Phase Diagram. , 2010 .

[18]  J. B. Mann,et al.  Configuration Energies of the Main Group Elements , 2000 .

[19]  J. M. Norbeck,et al.  Upper and lower bounds of two‐ and three‐body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions , 1976 .

[20]  R. Hoffmann,et al.  Atomic and Ionic Radii of Elements 1-96. , 2016, Chemistry.

[21]  Y. Honda,et al.  Toward Insulating Quasicrystalline Alloy in Al-Pd-Re Icosahedral Phase , 1993 .

[22]  B. Grushko A contribution to the ternary phase diagrams of Al with Co, Rh and Ir , 2019, Journal of Alloys and Compounds.

[23]  B. Grushko A study of the Al–Mn–Pt alloy system , 2019, Journal of Alloys and Compounds.

[24]  Pekka Pyykkö,et al.  Molecular double-bond covalent radii for elements Li-E112. , 2009, Chemistry.

[25]  Juris Meija,et al.  Atomic weights of the elements 2013 (IUPAC Technical Report) , 2016 .

[26]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[27]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[28]  B. Grushko,et al.  Refinement of the Al-rich part of the Al–Cu–Re phase diagram and atomic model of the ternary Al6.2Cu2Re phase , 2016 .

[29]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[30]  C. Janot The crystallography of quasicrystals , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[31]  B. Grushko A study of phase equilibria in the Al–Pt–Rh alloy system , 2015 .

[32]  B. Grushko,et al.  Al-rich region of Al–Cu–Mn , 2016 .

[33]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[34]  D. Weix,et al.  New Ligands for Nickel Catalysis from Diverse Pharmaceutical Heterocycle Libraries , 2016, Nature chemistry.

[35]  B. Grushko,et al.  An investigation of the Al–Pd–Ir phase diagram between 50 and 100 at.% Al , 2008 .

[36]  Shuichi Iwata,et al.  Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB , 2004 .

[37]  B. Grushko,et al.  Formation of Complex Intermetallics in the Al-Rich Part of Al-Pt-Ru , 2015 .

[38]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[39]  Rudolf Allmann,et al.  The introduction of structure types into the Inorganic Crystal Structure Database ICSD , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[40]  K. Nakayama,et al.  Crystallographic features and state stability of the decagonal quasicrystal in the Al-Co-Cu alloy system , 2016, 1606.04043.

[41]  A. Machida,et al.  Intermediate-valence icosahedral Au-Al-Yb quasicrystal , 2012 .

[42]  K. Kimura,et al.  Electronic Properities of the Single-Grained Icosahedral Phase of Al-Li-Cu , 1989 .

[43]  P. Schwerdtfeger,et al.  2018 Table of static dipole polarizabilities of the neutral elements in the periodic table* , 2018, Molecular Physics.

[44]  John Rumble,et al.  CRC Handbook of Chemistry and Physics, 98th Edition , 2017 .

[45]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[46]  B. Grushko,et al.  Formation of quasiperiodic and related periodic intermetallics in alloy systems of aluminum with transition metals , 2007 .

[47]  B. Grushko,et al.  A study of the Al-rich region of the Al–Cu–Mo alloy system , 2002 .

[48]  Norman L. Allinger,et al.  Molecular mechanics parameters , 1994 .

[49]  K. Kamiya,et al.  Discovery of superconductivity in quasicrystal , 2018, Nature Communications.

[50]  B. Grushko,et al.  A study of the Al-Ni-Pt alloy system. Phase equilibria at 1100 and 1300°C , 2011 .

[51]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[52]  A. Inoue,et al.  Stable Decagonal Al–Co–Ni and Al–Co–Cu Quasicrystals , 1989 .

[53]  T. Andersen Atomic negative ions: structure, dynamics and collisions , 2004 .

[54]  A. Tsai Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy∗ , 2008, Science and technology of advanced materials.

[55]  Terry L. Meek,et al.  Configuration Energies of the d-Block Elements , 2000 .

[56]  A. Dalgarno,et al.  Linear response time-dependent density functional theory for van der Waals coefficients. , 2004, The Journal of chemical physics.

[57]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[58]  K. Ishida,et al.  Quantum critical state in a magnetic quasicrystal. , 2012, Nature materials.

[59]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[60]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[61]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[62]  B. Grushko,et al.  An investigation of the Al–Rh–Ru phase diagram above 50 at.% Al , 2011 .

[63]  B. Grushko,et al.  The Al-rich region of the Al–Mn–Ni alloy system. Part II. Phase equilibria at 620–1000 °C , 2011 .

[64]  B. Grushko A study of the Al–Fe–Pt alloy system , 2020 .

[65]  Z. Hou,et al.  Two pressure-induced superconducting transitions in SnBi2Se4 explored by data-driven materials search: new approach to developing novel functional materials including thermoelectric and superconducting materials , 2018, Applied Physics Express.

[66]  K. Kimura,et al.  Local cluster networks and the number of valence states in aluminium–transition metal face-centred icosahedral quasicrystals , 2017 .

[67]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[68]  D. Zagorac,et al.  Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features , 2019, Journal of applied crystallography.

[69]  B. Grushko,et al.  Phase equilibria in the Al-rich region of the Al–Ni–Re alloy system , 2009 .

[70]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[71]  A. Tsai,et al.  Atomic structures of ternary Yb–Cd–Mg icosahedral quasicrystals and a 1/1 approximant , 2017 .

[72]  A. Inoue,et al.  A Stable Quasicrystal in Al-Cu-Fe System , 1987 .

[73]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[74]  Akiji Yamamoto,et al.  Atomic structure of the binary icosahedral Yb-Cd quasicrystal. , 2007, Nature materials.

[75]  B. Grushko,et al.  A Study of the Al‐Rich Part of the Al—Ni—Pt Alloy System. , 2008 .

[76]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[77]  B. Grushko,et al.  An investigation of the Al-rich region of the Al-Ni-Ir phase diagram , 2010 .