Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain

The origins of the hippocampal (subicular) projections to the anterior thalamic nuclei and mammillary bodies were compared in rats and macaque monkeys using retrograde tracers. These projections form core components of the Papez circuit, which is vital for normal memory. The study revealed a complex pattern of subicular efferents, consistent with the presence of different, parallel information streams, whose segregation appears more marked in the rat brain. In both species, the cells projecting to the mammillary bodies and anterior thalamic nuclei showed laminar separation but also differed along other hippocampal axes. In the rat, these diencephalic inputs showed complementary topographies in the proximal–distal (columnar) plane, consistent with differential involvement in object‐based (proximal subiculum) and context‐based (distal subiculum) information. The medial mammillary inputs, which arose along the anterior–posterior extent of the rat subiculum, favoured the central subiculum (septal hippocampus) and the more proximal subiculum (temporal hippocampus). In contrast, anterior thalamic inputs were largely confined to the dorsal (i.e. septal and intermediate) subiculum, where projections to the anteromedial nucleus favoured the proximal subiculum while those to the anteroventral nucleus predominantly arose in the distal subiculum. In the macaque, the corresponding diencephalic inputs were again distinguished by anterior–posterior topographies, as subicular inputs to the medial mammillary bodies predominantly arose from the posterior hippocampus while subicular inputs to the anteromedial thalamic nucleus predominantly arose from the anterior hippocampus. Unlike the rat, there was no clear evidence of proximal–distal separation as all of these medial diencephalic projections preferentially arose from the more distal subiculum.

[1]  W. Cowan,et al.  An autoradiographic study of the organization of the efferet connections of the hippocampal formation in the rat , 1977, The Journal of comparative neurology.

[2]  Kat Christiansen,et al.  The subiculum: the heart of the extended hippocampal system. , 2015, Progress in brain research.

[3]  Menno P. Witter,et al.  Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization , 2006, Behavioural Brain Research.

[4]  H. Barbas,et al.  Pathways for emotions and memory: I. Input and output zones linking the anterior thalamic nuclei with prefrontal cortices in the rhesus monkey , 2002 .

[5]  M. Mishkin,et al.  Mamillary-body lesions and visual recognition in monkeys , 2004, Experimental Brain Research.

[6]  John P. Aggleton,et al.  The Conjoint Importance of the Hippocampus and Anterior Thalamic Nuclei for Allocentric Spatial Learning: Evidence from a Disconnection Study in the Rat , 2001, The Journal of Neuroscience.

[7]  Seralynne D Vann,et al.  Transient spatial deficit associated with bilateral lesions of the lateral mammillary nuclei , 2005, The European journal of neuroscience.

[8]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[9]  J. Aggleton A description of the amygdalo-hippocampal interconnections in the macaque monkey , 2004, Experimental Brain Research.

[10]  R. D. BURWELLa,et al.  POSITIONAL FIRING PROPERTIES OF POSTRHINAL CORTEX NEURONS , 2003 .

[11]  Maureen Ritchey,et al.  Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. , 2015, Progress in brain research.

[12]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[13]  Seralynne D. Vann,et al.  Re-evaluating the role of the mammillary bodies in memory , 2010, Neuropsychologia.

[14]  M. Witter,et al.  Topographical and laminar organization of subicular projections to the parahippocampal region of the rat , 2003, The Journal of comparative neurology.

[15]  M. Mishkin,et al.  Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques , 2005, Experimental Brain Research.

[16]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[17]  D. Amaral,et al.  Cortical inputs to the CA1 field of the monkey hippocampus originate from the perirhinal and parahippocampal cortex but not from area TE , 1990, Neuroscience Letters.

[18]  Jeffrey S. Taube,et al.  Head direction cells and the neural mechanisms of spatial orientation , 2005 .

[19]  Norio Ishizuka,et al.  Topographic distribution of cortical projection cells in the rat subiculum , 2015, Neuroscience Research.

[20]  Richard C Saunders,et al.  Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the Macaque brain , 2002, The Journal of comparative neurology.

[21]  Jean Delay,et al.  Le Syndrome de Korsakoff , 1969 .

[22]  M. Witter,et al.  Subicular efferents are organized mostly as parallel projections: A double‐labeling, retrograde‐tracing study in the rat , 1998, The Journal of comparative neurology.

[23]  R. Saunders,et al.  Projections from the hippocampal region to the mammillary bodies in macaque monkeys , 2005, The European journal of neuroscience.

[24]  L. Heimer,et al.  A safer and more sensitive substitute for diamino-benzidine in the light microscopic demonstration of retrograde and anterograde axonal transport of HRP , 1977, Neuroscience Letters.

[25]  J. Aggleton,et al.  The mammillary bodies: two memory systems in one? , 2004, Nature Reviews Neuroscience.

[26]  Daniela Montaldi,et al.  A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory , 2008, Nature Neuroscience.

[27]  Jeffrey S Taube,et al.  Projections to the anterodorsal thalamus and lateral mammillary nuclei arise from different cell populations within the postsubiculum: Implications for the control of head direction cells , 2011, Hippocampus.

[28]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[29]  J. T. Erichsen,et al.  Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions , 2010, The European journal of neuroscience.

[30]  T. Kishi,et al.  Topographical organization of projections from the subiculum to the hypothalamus in the rat , 2000, The Journal of comparative neurology.

[31]  J. Rawlins,et al.  Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. , 1999, Behavioral neuroscience.

[32]  J. Aggleton,et al.  The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat , 1996, Behavioural Brain Research.

[33]  T. van Groen,et al.  The connections of presubiculum and parasubiculum in the rat , 1990, Brain Research.

[34]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[35]  Hugo J Spiers,et al.  Talent in the taxi: a model system for exploring expertise , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  D. Amaral,et al.  The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). I. Cytoarchitectonic organization , 1982, The Journal of comparative neurology.

[37]  Michael Petrides,et al.  Spatial conditional associative learning: effects of thalamo-hippocampal disconnection in rats , 2004, Neuroreport.

[38]  D L Rosene,et al.  Subicular input from temporal cortex in the rhesus monkey. , 1979, Science.

[39]  R. Morris,et al.  Spatial learning with a minislab in the dorsal hippocampus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. van Groen,et al.  The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections , 1990, Brain Research.

[41]  C. Gross,et al.  Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. , 1998, Journal of neurophysiology.

[42]  W M Cowan,et al.  Subcortical afferents to the hippocampal formation in the monkey , 1980, The Journal of comparative neurology.

[43]  Tobias Bast,et al.  Toward an Integrative Perspective on Hippocampal Function: From the Rapid Encoding of Experience to Adaptive Behavior , 2007, Reviews in the neurosciences.

[44]  Christian F. Doeller,et al.  Memory hierarchies map onto the hippocampal long axis in humans , 2015, Nature Neuroscience.

[45]  J. DeVito,et al.  Subcortical projections to the hippocampal formation in squirrel monkey (Saimiri sciureus) , 1980, Brain Research Bulletin.

[46]  J. Feldon,et al.  Specific neuronal protein A new tool for histological evaluation of excitotoxic lesions , 2002, Physiology & Behavior.

[47]  Douglas L. Rosene,et al.  Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex , 2015, Cerebral cortex.

[48]  A. Craig,et al.  Significant differences in the retrograde labeling of spinothalamic tract cells by horseradish peroxidase and the fluorescent tracers fast blue and diamidino yellow , 2004, Experimental Brain Research.

[49]  Amanda Parker,et al.  Mamillary Body Lesions in Monkeys Impair Object-in-Place Memory: Functional Unity of the Fornix-Mamillary System , 1997, Journal of Cognitive Neuroscience.

[50]  C. Caltagirone,et al.  Vascular thalamic amnesia: A reappraisal , 2011, Neuropsychologia.

[51]  Russell A. Epstein Parahippocampal and retrosplenial contributions to human spatial navigation , 2008, Trends in Cognitive Sciences.

[52]  D L Rosene,et al.  A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices , 1988, The Journal of comparative neurology.

[53]  L. E. White,et al.  Origin of the direct hippocampus-anterior thalamic bundle in the rat: A combined horseradish peroxidase-Golgi analysis , 1977, Experimental Neurology.

[54]  D L Rosene,et al.  Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe , 1998, The Journal of comparative neurology.

[55]  G V Allen,et al.  Mamillary body in the rat: A cytoarchitectonic, golgi, and ultrastructural study , 1988, The Journal of comparative neurology.

[56]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[57]  J. Olszewski The Thalamus of the Macaca Mulatta: An Atlas for Use with the Stereotaxic Instrument , 1952 .

[58]  R. Saunders,et al.  Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey (Macaca fascicularis) , 2012, The Journal of comparative neurology.

[59]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[60]  L. Saksida,et al.  Memory, perception, and the ventral visual‐perirhinal‐hippocampal stream: Thinking outside of the boxes , 2007, Hippocampus.

[61]  Eleanor A. Maguire,et al.  Retrosplenial Cortex Codes for Permanent Landmarks , 2012, PloS one.

[62]  M. Fujii,et al.  Fixation of horseradish peroxidase reaction products with ammonium molybdate , 1984, Neuroscience Research.

[63]  Noelia Montejo,et al.  Stability of subicular place fields across multiple light and dark transitions , 2010, The European journal of neuroscience.

[64]  Shane M. O’Mara,et al.  Evidence for spatially-responsive neurons in the rostral thalamus , 2015, Front. Behav. Neurosci..

[65]  T. Kitsukawa,et al.  Proximodistal Segregation of Nonspatial Information in CA3: Preferential Recruitment of a Proximal CA3-Distal CA1 Network in Nonspatial Recognition Memory , 2013, The Journal of Neuroscience.

[66]  C. Barnes,et al.  Spatial Representation along the Proximodistal Axis of CA1 , 2010, Neuron.

[67]  K. Horikawa,et al.  Comparison of techniques for retrograde labeling using the rat's facial nucleus , 1986, Journal of Neuroscience Methods.

[68]  Shane O'Mara,et al.  The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us , 2005, Journal of anatomy.

[69]  A. Siegel,et al.  The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study , 1975, Brain Research.

[70]  H. Shibata,et al.  Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat , 1992, The Journal of comparative neurology.

[71]  D. Amaral,et al.  Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex , 1991, The Journal of comparative neurology.

[72]  G. Byatt,et al.  Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. , 1996, Behavioral neuroscience.

[73]  L. W. Swanson,et al.  The organization of the fimbria, dorsal fornix and ventral hippocampal commissure in the rat , 2004, Anatomy and Embryology.

[74]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[75]  F. H. Lopes da Silva,et al.  Networks of the Hippocampal Memory System of the Rat: The Pivotal Role of the Subiculum a , 2000, Annals of the New York Academy of Sciences.

[76]  C. Metz,et al.  A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase , 1977, The Histochemical Journal.

[77]  Richard C Saunders,et al.  The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys , 2013, The European journal of neuroscience.

[78]  H. Kuypers,et al.  Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey , 1977, Experimental Brain Research.

[79]  M. W. Brown,et al.  Episodic memory, amnesia, and the hippocampal–anterior thalamic axis , 1999, Behavioral and Brain Sciences.

[80]  J. Kril,et al.  Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. , 2000, Brain : a journal of neurology.

[81]  E. Maguire The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. , 2001, Scandinavian journal of psychology.

[82]  Larry W. Swanson,et al.  Brain Maps: Structure of the Rat Brain , 1992 .

[83]  J. Aggleton,et al.  Evidence of a Spatial Encoding Deficit in Rats with Lesions of the Mammillary Bodies or Mammillothalamic Tract , 2003, The Journal of Neuroscience.

[84]  Simon B. Eickhoff,et al.  Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: Focus on the subiculum , 2015, NeuroImage.

[85]  Song-Lin Ding,et al.  Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent , 2013, The Journal of comparative neurology.

[86]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[87]  H. Kuypers,et al.  Two new fluorescent retrograde neuronal tracers which are transported over long distances , 1980, Neuroscience Letters.

[88]  J. Aggleton X-ray localization of limbic structures in the cynomolgus monkey (Macaca fascicularis) , 1985, Journal of Neuroscience Methods.

[89]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[90]  E. Maguire,et al.  Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity , 2014, Cerebral cortex.

[91]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[92]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[93]  R. Sutherland,et al.  The role of the fornix/fimbria and some related subcortical structures in place learning and memory , 1989, Behavioural Brain Research.

[94]  J. Aggleton,et al.  eview hy do lesions in the rodent anterior thalamic nuclei cause such evere spatial deficits ? , 2015 .

[95]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[96]  Michael R. Hunsaker,et al.  The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty , 2008, Hippocampus.

[97]  Hallvard Røe Evensmoen,et al.  Long-axis specialization of the human hippocampus , 2013, Trends in Cognitive Sciences.

[98]  J. T. Erichsen,et al.  Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat , 2013, The Journal of comparative neurology.

[99]  M Mishkin,et al.  The origin, course, and termination of the hippocampothalamic projections in the macaque , 1986, The Journal of comparative neurology.

[100]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[101]  N. Kapur,et al.  The role of diencephalic pathology in human memory disorder. Evidence from a penetrating paranasal brain injury. , 1990, Brain : a journal of neurology.

[102]  F. H. Lopes da Silva,et al.  Cortico‐hippocampal communication by way of parallel parahippocampal‐subicular pathways , 2000, Hippocampus.

[103]  Surya Ganguli,et al.  Behavioral/systems/cognitive Spatial Information Outflow from the Hippocampal Circuit: Distributed Spatial Coding and Phase Precession in the Subiculum , 2022 .

[104]  T. Jay,et al.  Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin , 1991, The Journal of comparative neurology.

[105]  R. Linden,et al.  Evidence for dendritic competition in the developing retina , 1982, Nature.

[106]  Seralynne D Vann,et al.  The mammillary bodies and memory: more than a hippocampal relay. , 2015, Progress in brain research.

[107]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  L. Saksida,et al.  Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. , 2007, Annual review of neuroscience.

[109]  P. E. Sharp,et al.  Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  Richard C Saunders,et al.  Origin and topography of fibers contributing to the fornix in macaque monkeys , 2007, Hippocampus.

[111]  Morris Moscovitch,et al.  A Hippocampal Marker of Recollection Memory Ability among Healthy Young Adults: Contributions of Posterior and Anterior Segments , 2011, Neuron.

[112]  A. Siegel,et al.  Thalamic projections of the hippocampal formation: Evidence for an alternate pathway involving the internal capsule , 1977, Brain Research.

[113]  C. Adams,et al.  Stabilization of tetramethylbenzidine (TMB) reaction product at the electron microscopic level by ammonium molybdate , 1988, Journal of Neuroscience Methods.

[114]  S. Siegelbaum,et al.  The hippocampal CA2 region is essential for social memory , 2014, Nature.

[115]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[116]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[117]  D. Xiaob,et al.  Pathways for emotions and memory II . Afferent input to the anterior thalamic nuclei from prefrontal , temporal , hypothalamic areas and the basal ganglia in the rhesus monkey , 2002 .

[118]  K. Rosenblum,et al.  Differential Contribution of Hippocampal Subfields to Components of Associative Taste Learning , 2014, The Journal of Neuroscience.

[119]  A. Siegel,et al.  Origin of the fornix system in the squirrel monkey , 1979, Brain Research.

[120]  R. Saunders,et al.  The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. , 1997, Memory.

[121]  J. Rose The cell structure of the mamillary body in the mammals and in man. , 1939, Journal of anatomy.

[122]  N. Spruston,et al.  Target‐specific output patterns are predicted by the distribution of regular‐spiking and bursting pyramidal neurons in the subiculum , 2012, Hippocampus.

[123]  Margaret L. Schlichting,et al.  CA1 subfield contributions to memory integration and inference , 2014, Hippocampus.

[124]  Rachel A. Diana,et al.  Imaging recollection and familiarity in the medial temporal lobe: a three-component model , 2007, Trends in Cognitive Sciences.

[125]  M. Yukie,et al.  Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the japanese monkey (Macaca fuscata) , 2000, The Journal of comparative neurology.

[126]  R. Insausti,et al.  Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis) , 2001, The European journal of neuroscience.

[127]  Michael R. Hunsaker,et al.  The role of hippocampal subregions in detecting spatial novelty. , 2005, Behavioral neuroscience.

[128]  J. T. Erichsen,et al.  Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat , 2010, The Journal of comparative neurology.

[129]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[130]  Carlo Caltagirone,et al.  Recollection and familiarity in the human thalamus , 2015, Neuroscience & Biobehavioral Reviews.

[131]  Inah Lee,et al.  Neural Correlates of Object-Associated Choice Behavior in the Perirhinal Cortex of Rats , 2015, The Journal of Neuroscience.

[132]  G. V. Van Hoesen,et al.  Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. , 1977, Science.

[133]  N. Ishizuka,et al.  Laminar organization of the pyramidal cell layer of the subiculum in the rat , 2001, The Journal of comparative neurology.

[134]  J. Aggleton Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function , 2012, Neuroscience & Biobehavioral Reviews.

[135]  D. Béracochéa,et al.  Impairment of spontaneous alternation behavior in sequential test procedures following mammillary body lesions in mice: evidence for time-dependent interference-related memory deficits. , 1987, Behavioral neuroscience.