A signal-processing framework for forward and inverse rendering

The study of the computational aspects of reflection, and especially the interaction between the illumination and the reflective properties of a surface, is of fundamental importance in both computer graphics and vision. In computer graphics, this interaction is a basic building block in most rendering algorithms, i.e. methods that create synthetic computer-generated images. To obtain accurate illumination and reflectance models for rendering, and in computer vision, we often want to invert this interaction by inverse rendering. This dissertation describes a new way of looking at reflection on a curved surface, as a special type of convolution of the incident illumination and the reflective properties of the surface (technically, the bi-directional reflectance distribution function or BRDF. We first theoretically formalize these ideas, leading to the derivation of a convolution theorem in terms of the spherical harmonic coefficients of the lighting and BRDF. This allows us to introduce a signal-processing framework for reflection, wherein the incident lighting is the signal, the BRDF is the filter, and the reflected light is obtained by filtering the input illumination (signal) using the frequency response of the BRDF filter. We then show how our framework can be used practically for computing and displaying synthetic images in real-time with natural illumination and physically-based BRDFs. Next, we extend and apply our framework to inverse rendering. We demonstrate estimation of realistic lighting and reflective properties from photographs, and show how this approach can be used to synthesize realistic images under novel lighting and viewing conditions.

[1]  Serge J. Belongie,et al.  Structured importance sampling of environment maps , 2003, ACM Trans. Graph..

[2]  L. M. M.-T. Spherical Harmonics: an Elementary Treatise on Harmonic Functions, with Applications , 1928, Nature.

[3]  J. Koenderink,et al.  Optical properties (bidirectional reflection distribution functions) of velvet. , 1998, Applied optics.

[4]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.

[5]  Ravi Ramamoorthi ravir Analytic PCA construction for theoretical analysis of lighting variability , including attached shadows , in a single image of a convex Lambertian object , 2001 .

[6]  P. Hanrahan,et al.  On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  K. Torrance,et al.  Image-Based BRDF Measurement , 1999 .

[8]  C. R. Hoffman,et al.  Illumination and Reflection Maps : Simulated Objects in Simulated and Real Environments Gene , 1984 .

[9]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[10]  Laurent Moll,et al.  Efficient image-based methods for rendering soft shadows , 2000, SIGGRAPH.

[11]  Pat Hanrahan,et al.  Analysis of planar light fields from homogeneous convex curved surfaces under distant illumination , 2001, IS&T/SPIE Electronic Imaging.

[12]  Jitendra Malik,et al.  Recovering photometric properties of architectural scenes from photographs , 1998, SIGGRAPH.

[13]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[14]  Ravi Ramamoorthi,et al.  Analytic PCA Construction for Theoretical Analysis of Lighting Variability in Images of a Lambertian Object , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  André Gagalowicz,et al.  Image-based rendering of diffuse, specular and glossy surfaces from a single image , 2001, SIGGRAPH.

[16]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[17]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[18]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[19]  Pat Hanrahan,et al.  Frequency space environment map rendering , 2002, SIGGRAPH.

[20]  Gavin S. P. Miller,et al.  Lazy Decompression of Surface Light Fields for Precomputed Global Illumination , 1998, Rendering Techniques.

[21]  Michael Gervautz,et al.  An Image based Measurement System for Anisotropic Reflection , 1996, Comput. Graph. Forum.

[22]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[23]  K. Mani Chandy,et al.  A General Resource Reservation Framework for Scientific Computing , 1997, ISCOPE.

[24]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[26]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[27]  John M. Snyder,et al.  Parameterized Animation Compression , 2000, Rendering Techniques.

[28]  R. Love Surface reflection model estimation from naturally illuminated image sequences , 1997 .

[29]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1976, CACM.

[30]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[31]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[32]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[33]  T. Caelli,et al.  Inverting an illumination model from range and intensity maps , 1994 .

[34]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[35]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[36]  J. Davis,et al.  Spacetime stereo: a unifying framework for depth from triangulation , 2005, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[37]  A. Wilkie,et al.  Orientation Lightmaps for Photon Radiosity in Complex Environments , 1999 .

[38]  Katsushi Ikeuchi,et al.  Eigen-texture method: Appearance compression based on 3D model , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[39]  David W. Jacobs,et al.  Using specularities for recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[40]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[41]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[42]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[43]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[44]  J. A. Cochran The analysis of linear integral equations , 1973 .

[45]  Ares Lagae,et al.  Eurographics Symposium on Rendering 2003 , 2004 .

[46]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[47]  James Arvo,et al.  Applications of irradiance tensors to the simulation of non-Lambertian phenomena , 1995, SIGGRAPH.

[48]  Frédo Durand,et al.  A gentle introduction to bilateral filtering and its applications , 2007, SIGGRAPH Courses.

[49]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[50]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[51]  Min Chen,et al.  Simulating Non-Lambertian Phenomena Involving Linearly-Varying Luminaires , 2001, Rendering Techniques.

[52]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[53]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[54]  Peter W. Hallinan A low-dimensional representation of human faces for arbitrary lighting conditions , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[55]  James Arvo,et al.  Creating generative models from range images , 1999, SIGGRAPH.

[56]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[57]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[58]  Norman J. McCormick,et al.  Inverse radiative transfer problems : a review , 1992 .

[59]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[60]  Hans-Peter Seidel,et al.  Unified Approach to Prefiltered Environment Maps , 2000, Rendering Techniques.

[61]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[62]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[63]  T. Inui,et al.  Group theory and its applications in physics , 1990 .

[64]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[65]  Mark Ollila,et al.  Eurographics Symposium on Rendering , 2004 .

[66]  Peter Schröder,et al.  Spherical Wavelets: Texture Processing , 1995, Rendering Techniques.

[67]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[68]  Edward H. Adelson,et al.  Estimating surface reflectance properties from images under unknown illumination , 2001, IS&T/SPIE Electronic Imaging.

[69]  Shoji Tominaga,et al.  Estimating Reflection Parameters from a Single Color Image , 2000, IEEE Computer Graphics and Applications.

[70]  Pat Hanrahan,et al.  A signal-processing framework for reflection , 2004, ACM Trans. Graph..

[71]  John M. Snyder,et al.  Parameterized environment maps , 2001, I3D '01.

[72]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.

[73]  J. Koenderink,et al.  Phenomenological description of bidirectional surface reflection , 1998 .

[74]  Jan Kautz,et al.  Approximation of Glossy Reflection with Prefiltered Environment Maps , 2000, Graphics Interface.

[75]  François X. Sillion,et al.  Fast calculation of soft shadow textures using convolution , 1998, SIGGRAPH.

[76]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[77]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[78]  Daniel Snow,et al.  Determining Generative Models of Objects Under Varying Illumination: Shape and Albedo from Multiple Images Using SVD and Integrability , 1999, International Journal of Computer Vision.

[79]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[80]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[81]  Steve Marschner,et al.  Inverse Lighting for Photography , 1997, CIC.

[82]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[83]  Julie Dorsey,et al.  Effic ient Re-rendering of Naturally Illuminated Environments , 1994 .

[84]  Katsushi Ikeuchi,et al.  Illumination Distribution from Brightness in Shadows: Adaptive Estimation of Illumination Distribution with Unknown Reflectance Properties in Shadow Regions , 1999, ICCV.

[85]  K. Ikeuchi,et al.  Reflectance analysis under solar illumination , 1994, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[86]  Anoop Gupta,et al.  Inverse Rendering Methods For Hardware-Accelerated Display Of Parameterized Image Spaces , 2001 .

[87]  Takeo Kanade,et al.  The measurement of highlights in color images , 1988, International Journal of Computer Vision.

[88]  Li Zhang,et al.  Single view modeling of free-form scenes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[89]  Paul Lalonde,et al.  Filtered Local Shading in the Wavelet Domain , 1997, Rendering Techniques.

[90]  Donald P. Greenberg,et al.  The Irradiance Volume , 1998, IEEE Computer Graphics and Applications.

[91]  Ravi Ramamoorthi,et al.  Dynamic Splines with Constraints for Animation , 1997 .

[92]  Michael Halle,et al.  Multiple viewpoint rendering , 1998, SIGGRAPH.

[93]  Kosuke Sato,et al.  Determining Reflectance Properties of an Object Using Range and Brightness Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  Eero P. Simoncelli,et al.  Efficient Linear Re-rendering for Interactive Lighting Design , 1997 .

[95]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[96]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[97]  Pat Hanrahan,et al.  A real-time procedural shading system for programmable graphics hardware , 2001, SIGGRAPH.

[98]  Andreas Kolb,et al.  Homomorphic factorization of BRDF-based lighting computation , 2002, ACM Trans. Graph..

[99]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[100]  Ravi Ramamoorthi,et al.  Fast construction of accurate quaternion splines , 1997, SIGGRAPH.