Visual Model Feature Tracking For UAV Control

This paper explores the possibilities to use robust object tracking algorithms based on visual model features as generator of visual references for UAV control. A scale invariant feature transform (SIFT) algorithm is used for detecting the salient points at every processed image, then a projective transformation for evaluating the visual references is obtained using a version of the RANSAC algorithm, in which a series of matched key-points pairs that fulfill the transformation equations are selected, rejecting otherwise the corrupted data. The system has been tested using diverse image sequences showing its capability to track objects significantly changed in scale, position, rotation, generating at the same time velocity references to the UAV flight controller. The robustness our approach has also been validated using images taken from real flights showing noise and lighting distortions. The results presented are promising in order to be used as reference generator for the control system.

[1]  Stefan Carlsson,et al.  Visual Landmark Selection and Recognition for Autonomous Unmanned Aerial Vehicle Navigation , 2005 .

[2]  Gaurav S. Sukhatme,et al.  A visual servoing approach for tracking features in urban areas using an autonomous helicopter , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[3]  Vladislav Gavrilets,et al.  Autonomous aerobatic maneuvering of miniature helicopters , 2003 .

[4]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[5]  David G. Lowe,et al.  Local and global localization for mobile robots using visual landmarks , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[7]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[8]  José María Gorráiz Irízar Escuela Técnica Superior de Ingenieros Industriales , 1999 .

[9]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[10]  Gaurav S. Sukhatme,et al.  Visually guided landing of an unmanned aerial vehicle , 2003, IEEE Trans. Robotics Autom..

[11]  Lee E. Weiss,et al.  Adaptive Visual Servo Control of Robots , 1983 .

[12]  Jean-Arcady Meyer,et al.  2D Simultaneous Localization And Mapping for Micro Air Vehicles , 2006 .

[13]  Lee E. Weiss,et al.  Dynamic visual servo control of robots: An adaptive image-based approach , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[14]  Gaurav S. Sukhatme,et al.  Visual servoing of an autonomous helicopter in urban areas using feature tracking , 2006, J. Field Robotics.

[15]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[16]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[17]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[18]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[19]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Simone Duranti,et al.  Autonomous Landing of an Unmanned Helicopter based on Vision and Inertial Sensing , 2004, ISER.