暂无分享,去创建一个
[1] S.J.J. Smith,et al. Empirical Methods for Artificial Intelligence , 1995 .
[2] John Franco,et al. Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..
[3] Andrew J. Parkes,et al. Clustering at the Phase Transition , 1997, AAAI/IAAI.
[4] S. Kirkpatrick,et al. 2+p-SAT: relation of typical-case complexity to the nature of the phase transition , 1999 .
[5] Toby Walsh,et al. Local Search and the Number of Solutions , 1996, CP.
[6] David G. Mitchell,et al. Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.
[7] Holger H. Hoos,et al. Characterizing the Run-time Behavior of Stochastic Local Search , 1998 .
[8] Holger H. Hoos,et al. Stochastic local search - methods, models, applications , 1998, DISKI.
[9] Christos H. Papadimitriou,et al. On the Greedy Algorithm for Satisfiability , 1992, Information Processing Letters.
[10] Ian P. Gent,et al. On the Completeness of WalkSAT for 2-SAT ? , 1999 .
[11] Ian P. Gent. On the Stupid Algorithm for Satissability , 1998 .
[12] Yumi K. Tsuji,et al. EVIDENCE FOR A SATISFIABILITY THRESHOLD FOR RANDOM 3CNF FORMULAS , 1992 .
[13] Holger H. Hoos,et al. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT , 1999, AAAI/IAAI.
[14] Tad Hogg,et al. The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..
[15] Jeremy Frank,et al. When Gravity Fails: Local Search Topology , 1997, J. Artif. Intell. Res..
[16] James M. Crawford,et al. Implicates and Prime Implicates in Random 3-SAT , 1996, Artif. Intell..
[17] Toby Walsh. The Constrainedness Knife-Edge , 1998, AAAI/IAAI.
[18] Toby Walsh,et al. An Empirical Analysis of Search in GSAT , 1993, J. Artif. Intell. Res..
[19] Bart Selman,et al. Evidence for Invariants in Local Search , 1997, AAAI/IAAI.
[20] Holger H. Hoos. SAT-Encodings, Search Space Structure, and Local Search Performance , 1999, IJCAI.
[21] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.
[22] Hector J. Levesque,et al. Hard and Easy Distributions of SAT Problems , 1992, AAAI.
[23] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[24] Toby Walsh,et al. The Satisfiability Constraint Gap , 1996, Artif. Intell..
[25] Rémi Monasson,et al. Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.
[26] James M. Crawford,et al. Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..
[27] Yuichi Asahiro,et al. Random generation of test instances with controlled attributes , 1993, Cliques, Coloring, and Satisfiability.
[28] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[29] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[30] Makoto Yokoo,et al. Why Adding More Constraints Makes a Problem Easier for Hill-climbing Algorithms: Analyzing Landscapes of CSPs , 1997, CP.
[31] Rémi Monasson,et al. 2+p-SAT: Relation of typical-case complexity to the nature of the phase transition , 1999, Random Struct. Algorithms.
[32] Andrew J. Parkes,et al. Tuning Local Search for Satisfiability Testing , 1996, AAAI/IAAI, Vol. 1.
[33] Ian P. Gent,et al. Well out of reach: Why hard problems are hard , 1999 .
[34] Roberto J. Bayardo,et al. Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.
[35] Toby Walsh,et al. The Constrainedness of Search , 1996, AAAI/IAAI, Vol. 1.