Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells

Critical to the development of improved solid oxide fuel cell (SOFC) technology are novel compounds with high oxygen reduction reaction (ORR) catalytic activity and robust stability under cathode operating conditions. Approximately 2145 distinct perovskite compositions are screened for potential use as high activity, stable SOFC cathodes, and it is verified that the screening methodology qualitatively reproduces the experimental activity, stability, and conduction properties of well‐studied cathode materials. The calculated oxygen p‐band center is used as a first principle‐based descriptor of the surface exchange coefficient (k*), which in turn correlates with cathode ORR activity. Convex hull analysis is used under operating conditions in the presence of oxygen, hydrogen, and water vapor to determine thermodynamic stability. This search has yielded 52 potential cathode materials with good predicted stability in typical SOFC operating conditions and predicted k* on par with leading ORR perovskite catalysts. The established trends in predicted k* and stability are used to suggest methods of improving the performance of known promising compounds. The material design strategies and new materials discovered in the computational search help enable the development of high activity, stable compounds for use in future solid oxide fuel cells and related applications.

[1]  Yun Gan,et al.  Tin doped PrBaFe2O5+δ anode material for solid oxide fuel cells , 2017 .

[2]  Matthew T. Dunstan,et al.  Large scale in silico screening of materials for carbon capture through chemical looping , 2017 .

[3]  D. Gerthsen,et al.  Grain-size dependence of the deterioration of oxygen transport for pure and 3 mol% Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ induced by thermal annealing , 2017 .

[4]  Ryan O'Hayre,et al.  Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C , 2017 .

[5]  Zongping Shao,et al.  A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C , 2017, Nature Communications.

[6]  Henry H. Wu,et al.  The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion , 2016, 1610.00594.

[7]  E. Ivers-Tiffée,et al.  The impact of grain size, A/B-cation ratio, and Y-doping on secondary phase formation in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ , 2017, Journal of Materials Science.

[8]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[9]  C. Yoo,et al.  Unraveling Crystal Structure and Transport Properties of Fast Ion Conducting SrCo0.9Nb0.1O3−δ , 2016 .

[10]  D. Morgan,et al.  Factors controlling oxygen migration barriers in perovskites , 2016, 1609.03456.

[11]  A. Ghoniem,et al.  Redox Kinetics Study of Fuel Reduced Ceria for Chemical-Looping Water Splitting , 2016 .

[12]  Christopher M Wolverton,et al.  High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications , 2016 .

[13]  D. Morgan,et al.  Understanding and Controlling the Work Function of Perovskite Oxides Using Density Functional Theory , 2016, 1607.02121.

[14]  Wenqian Xu,et al.  Oxygen storage properties of La1-xSrxFeO3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study , 2016 .

[15]  D. Morgan,et al.  Oxygen Point Defect Chemistry in Ruddlesden-Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu). , 2016, The journal of physical chemistry letters.

[16]  Marco Buongiorno Nardelli,et al.  High-Throughput Prediction of Finite-Temperature Properties using the Quasi-Harmonic Approximation , 2016, 1603.06924.

[17]  Zongping Shao,et al.  Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. , 2016, Nano letters.

[18]  D. Morgan,et al.  Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden-Popper Phases and Correlations to First-Principles Descriptors. , 2015, The journal of physical chemistry letters.

[19]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[20]  Y. Shao-horn,et al.  Probing LaMO3 Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy , 2015 .

[21]  A. Govindaraj,et al.  Noteworthy performance of La(1-x)Ca(x)MnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. , 2015, Physical chemistry chemical physics : PCCP.

[22]  C. B. Carter,et al.  Materials synthesis, electrochemical characterization and oxygen permeation properties of Fe-doped BaZrO3 , 2014 .

[23]  Zongping Shao,et al.  High-performance SrNb0.1Co0.9−xFexO3−δ perovskite cathodes for low-temperature solid oxide fuel cells , 2014 .

[24]  Marco Buongiorno Nardelli,et al.  High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.

[25]  Zongping Shao,et al.  Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: a case study of cobalt-free BaFeO(3-δ). , 2014, ACS applied materials & interfaces.

[26]  S. Abanades,et al.  Investigation of Perovskite Structures as Oxygen-Exchange Redox Materials for Hydrogen Production from Thermochemical Two-Step Water-Splitting Cycles , 2014 .

[27]  J. Kuhn,et al.  Carbon Dioxide Conversion by Reverse Water–Gas Shift Chemical Looping on Perovskite-Type Oxides , 2014 .

[28]  D. Y. Kim,et al.  Electronic Defect Formation in Fe-Doped BaZrO3 Studied by X-Ray Absorption Spectroscopy , 2014 .

[29]  J. Goodenough,et al.  Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy , 2014 .

[30]  A. Feldhoff,et al.  A highly active perovskite electrode for the oxygen reduction reaction below 600 °C. , 2013, Angewandte Chemie.

[31]  Laura G. Sánchez-Lozada,et al.  Correction: Corrigendum: Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome , 2013, Nature Communications.

[32]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[33]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[34]  Zongping Shao,et al.  BaNb0.05Fe0.95O3−δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells , 2013 .

[35]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[36]  Kristin A. Persson,et al.  First principles high throughput screening of oxynitrides for water-splitting photocatalysts , 2013 .

[37]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[38]  T. Hong,et al.  Oxygen surface exchange properties of La0.6Sr0.4Co0.8Fe0.2O3 − δ coated with SmxCe1 − xO2 − δ , 2012 .

[39]  Zongping Shao,et al.  La-doped BaFeO3−δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte , 2012 .

[40]  D. Y. Kim,et al.  Defect Chemistry and Electrochemical Properties of BaZrO3 Heavily Doped with Fe , 2012 .

[41]  W. Sitte,et al.  Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La0.6Sr0.4CoO3 − δ , 2012 .

[42]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[43]  A. Su,et al.  Conductivity and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ cathode prepared by the citrate–EDTA complexing method , 2011 .

[44]  H. Tuller,et al.  A New Model Describing Solid Oxide Fuel Cell Cathode Kinetics: Model Thin Film SrTi1‐xFexO3‐δ Mixed Conducting Oxides–a Case Study , 2011 .

[45]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[46]  B. Yildiz,et al.  Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations , 2011 .

[47]  Shumin Fang,et al.  Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2011 .

[48]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[49]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[50]  W. Sitte,et al.  Long-term stability of the oxygen exchange properties of (La,Sr)1 − z(Co,Fe)O3 − δ in dry and wet atmospheres , 2011 .

[51]  W. Sitte,et al.  Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600 °C in dry and humid atmospheres , 2011 .

[52]  Shumin Fang,et al.  Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide probed by electrical conductivity relaxation , 2010 .

[53]  J. Kilner,et al.  Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3 − δ , 2010 .

[54]  E. Ivers-Tiffée,et al.  BSCF epitaxial thin films: Electrical transport and oxygen surface exchange , 2010 .

[55]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[56]  Y. Shao-horn Oxygen Surface Exchange Kinetics on Sr-Substituted Lanthanum Manganite and Ferrite Thin-Film Microelectrodes , 2009 .

[57]  W. Su,et al.  Novel BaCo0.7Fe0.3−yNbyO3−δ (y = 0–0.12) as a cathode for intermediate temperature solid oxide fuel cell , 2009 .

[58]  U. Starke,et al.  Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films , 2009 .

[59]  P. Ried,et al.  Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ , 2008 .

[60]  A. Feldhoff,et al.  Correlation of the Formation and the Decomposition Process of the BSCF Perovskite at Intermediate Temperatures , 2008 .

[61]  U. Guth,et al.  Oxygen transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3 − x and Ca0.5Sr0.5Mn0.8Fe0.2O3 − x obtained from permeation and conductivity relaxation experiments , 2008 .

[62]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[63]  J. Kilner,et al.  Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells , 2007 .

[64]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[65]  H. Tsuda,et al.  Enhancement of ferromagnetic ordering in dielectric BaFe1−xZrxO3−δ (x=0.5–0.8) single-crystal films by pulsed laser-beam deposition , 2005 .

[66]  A. Jacobson,et al.  Oxygen Transport Kinetics in SrFeO3 − δ , La0.5Sr0.5FeO3 − δ , and La0.2Sr0.8Cr0.2Fe0.8 O 3 − δ Measured by Electrical Conductivity Relaxation , 2005 .

[67]  Y. Ando,et al.  Achieving fast oxygen diffusion in perovskites by cation ordering , 2005, cond-mat/0501127.

[68]  S. Haile Fuel cell materials and components , 2003 .

[69]  G. D. Price,et al.  The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle , 2001, Nature.

[70]  Stephen J. Skinner,et al.  Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes , 2001 .

[71]  A. Jacobson,et al.  Impedance studies of oxygen exchange on dense thin film electrodes of La0.5Sr0.5CoO3-δ , 2000 .

[72]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[73]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[74]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[75]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[76]  J. Maier On the correlation of macroscopic and microscopic rate constants in solid state chemistry , 1998 .

[77]  H. Hofmann,et al.  Electrolysis : The important energy transformer in a world of sustainable energy , 1998 .

[78]  A. Quong,et al.  First-principles calculations of the thermal expansion of metals , 1997 .

[79]  J. E. Elshof,et al.  Oxygen Exchange and Diffusion Coefficients of Strontium‐Doped Lanthanum Ferrites by Electrical Conductivity Relaxation , 1997 .

[80]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[81]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[82]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[83]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[84]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .

[85]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[86]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[87]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.