Physiology of lateral line mechanoreceptive regions in the elasmobranch brain

SummaryThe physiology of mechanoreceptive lateral line areas was investigated in the thornback guitarfish,Platyrhinoidis triseriata, from medulla to telencephalon, using averaged evoked potentials (AEPs) and unit responses as windows to brain functions. Responses were analysed with respect to frequency sensitivity, intensity functions, influence of stimulus repetition rate, response latency, receptive field (RF) organization and multimodal interaction.1.Following a quasi-natural vibrating sphere stimulus, neural responses were recorded in the medullary medial octavolateralis nucleus (MON), the dorsal (DMN) and anterior (AN) nucleus of the mesencephalic nuclear complex, the diencephalic lateral tuberal nucleus (LTN), and a telencephalic area which may correspond to the medial pallium (Figs. 2, 3, 13, 14, 15, 16).2.Within the test range of 6.5–200 Hz all lateral line areas investigated responded to minute water vibrations. Best frequencies (in terms of displacement) were between 75 and 200 Hz with threshold values for AEPs as low as 0.005 μm peak-to-peak (p-p) water displacement calculated at the skin surface (Fig. 6).3.AEP-responses to a vibrating sphere stimulus recorded in the MON are tonic or phasic-tonic, i.e., responses are strongest at stimulus onset but last for the whole stimulus duration in form of a frequency following response (Fig. 3). DMN and AN responses are phasic or phasic-tonic. Units recorded in the MON are phase coupled to the stimulus, those recorded in the DMN, AN or LTN are usually not (Figs. 5, 8, 9). Diencephalic LTN and telencephalic lateral line responses (AEPs) often are purely phasic. However, in the diencephalic LTN tonic and/or off-responses can be recorded (Fig. 11).4.For the frequencies 25, 50, and 100 Hz, the dynamic intensity range of lateral line areas varies from 12.8 to at least 91.6 dB (AEP) respectively 8.9 and 92 dB (few unit and single unit recordings) (Fig. 7).5.Mesencephalic, diencephalic, and telencephalic RFs, based on the evaluation of AEPs or multiunit activity (MUA), are usually contralateral (AN and LTN) or ipsi- and contralateral (telencephalon) and often complex (Figs. 10, 12, 16).6.In many cases no obvious interactions between different modalities (vibrating sphere, electric field stimulus, and/or a light flash) were seen. However, some recording sites in the mesencephalic AN and the diencephalic LTN showed bimodal interactions in that an electric field stimulus decreased or increased the amplitude of a lateral line response and vice versa (Fig. 13B).

[1]  D. Maynard Cardiac inhibition in decapod Crustacea , 1961 .

[2]  M. Biederman-Thorson Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. , 1970, Brain research.

[3]  B. L. Roberts,et al.  Central Processing of Acousticolateralis Signals in Elasmobranchs , 1981 .

[4]  K. S. Babu Through-conducting systems in ventral nerve cord of centipedes , 1964, Zeitschrift für vergleichende Physiologie.

[5]  Joseph Bastian,et al.  Electrosensory input to the corpus cerebelli of the high frequency electric fishEigenmannia virescens , 1974, Journal of comparative physiology.

[6]  H Scheich,et al.  Neuronal Analysis of Wave Form in the Time Domain: Midbrain Units in Electric Fish during Social Behavior , 1974, Science.

[7]  G. Topp Primary lateral line response to water surface waves in the topminnowAplocheilus lineatus (Pisces, Cyprinodontidae) , 1983, Pflügers Archiv.

[8]  R. L. Boord,et al.  Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria , 1982, The Journal of comparative neurology.

[9]  W. Pitts,et al.  Anatomy and Physiology of Vision in the Frog (Rana pipiens) , 1960, The Journal of general physiology.

[10]  H. Bleckmann,et al.  Determination of source distance in the surface-feeding fish Pantodon buchholzi Pantodontidae , 1984, Animal Behaviour.

[11]  Josephson Rk,et al.  A simulation study of a diffuse conducting system based on coelenterate nerve nets. , 1961 .

[12]  J. Schweitzer Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata) , 2004, Journal of Comparative Physiology A.

[13]  Judith A. Manley,et al.  Single unit studies in the midbrain auditory area of Caiman , 1971, Zeitschrift für vergleichende Physiologie.

[14]  D. Lowe Single‐unit study of lateral line cells in the optic tectum of Xenopus laevis: Evidence for bimodal lateral line/optic units , 1987, The Journal of comparative neurology.

[15]  Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. , 1988, Brain, behavior and evolution.

[16]  R. Northcutt,et al.  Auditory centers in the elasmobranch brain stem: Deoxyglucose autoradiography and evoked potential recording , 1982, Brain Research.

[17]  Eric I. Knudsen,et al.  Midbrain responses to electroreceptive input in catfish , 2004, Journal of comparative physiology.

[18]  N Suga,et al.  Echo‐location of bats after ablation of auditory cortex , 1969, The Journal of physiology.

[19]  D. H. Paul,et al.  Studies on a primitive cerebellar cortex - II. The projection of the posterior lateral-line nerve to the lateral-line lobes of the dogfish brain , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  R. Northcutt,et al.  An electrosensory area in the telencephalon of the little skate, Raja erinacea , 1984, Brain Research.

[21]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[22]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[23]  H. Bleckmann,et al.  Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus , 1981, Naturwissenschaften.

[24]  A. Roberts Some features of the central co-ordination of a fast movement in the crayfish. , 1968, The Journal of experimental biology.

[25]  C. Wiersma,et al.  Electrical responses in decapod crustacean visual systems. , 1963, Journal of cellular and comparative physiology.

[26]  O. Grüsser,et al.  The effect of stimulus velocity on the response of movement sensitive neurons of the frog's retina , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[27]  W. Graf,et al.  The role of integrators in maintaining actively assumed abnormal postures , 1979, Journal of comparative physiology.

[28]  J. Thorson Dynamics of Motion Perception in the Desert Locust , 1964, Science.

[29]  A. Elepfandt,et al.  Lateral-line responses to water surface waves in the clawed frog,Xenopus laevis , 1987, Journal of Comparative Physiology A.

[30]  D. W. Jensen Vestibular compensation: Tonic spinal influence upon spontaneous descending vestibular nuclear activity , 1979, Neuroscience.

[31]  M. Biederman-Thorson Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. , 1970, Brain research.

[32]  Aage R. Møller,et al.  Basic Mechanisms in Hearing , 1973 .

[33]  E. Knudsen Distinct auditory and lateral line nuclei in the midbrain of catfishes , 1977, The Journal of comparative neurology.

[34]  Nobuo Suga,et al.  FEATURE EXTRACTION IN THE AUDITORY SYSTEM OF BATS , 1973 .

[35]  The connections between the lateral giant fibers of earthworms. , 1961, Comparative biochemistry and physiology.

[36]  H. Bleckmann,et al.  Role of lateral line in fish behaviour , 1986 .

[37]  B. Claas,et al.  Directional sensitivity of lateral line units in the clawed toadXenopus laevis Daudin , 1986, Journal of Comparative Physiology A.

[38]  J. Schweitzer The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thornback ray,Platyrhinoidis triseriata , 1983, Journal of comparative physiology.

[39]  T. Bullock,et al.  Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence. , 1982, Journal of neurobiology.

[40]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[41]  J. T. Corwin,et al.  Audition in Elasmobranchs , 1981 .

[42]  K. Behrend Processing information carried in a high frequency wave: Properties of cerebellar units in a high frequency electric fish , 2004, Journal of comparative physiology.

[43]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. II. PATTERN AND INTERACTION IN BURST FORMATION , 1955 .

[44]  P. Maclean,et al.  Species-typical behavior of hamsters deprived from birth of the neocortex. , 1981, Science.

[45]  David Bodznick,et al.  Segregation of electro- and mechanoreceptive inputs to the elasmobranch medulla , 1980, Brain Research.

[46]  Accepted September,et al.  Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. , 1985 .

[47]  K. Lashley Persistent Problems in the Evolution of Mind , 1949, The Quarterly Review of Biology.

[48]  Edward S. Hodgson,et al.  Sensory biology of sharks, skates, and rays , 1978 .

[49]  T. Bullock Comparisons of the Electric and Acoustic Senses and their Central Processing , 1981 .

[50]  D. W. Jensen Posture-correlated responses to vestibular polarization in vermal versus intermediate Posterior cerebellar cortex , 1985, Experimental Neurology.

[51]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[52]  Stephen M. Echteler,et al.  Organization of central auditory pathways in a teleost fish,Cyprinus carpio , 1985, Journal of Comparative Physiology A.

[53]  H. Hoagland ELECTRICAL RESPONSES FROM THE LATERAL-LINE NERVES OF FISHES , 1933, The Journal of general physiology.

[54]  Richard R. Fay,et al.  Hearing and Sound Communication in Fishes , 1981, Proceedings in Life Sciences.

[55]  E Fiebig,et al.  Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): A study with WGA‐HRP and extracellular granule cell recording , 1988, The Journal of comparative neurology.

[56]  P. Görner,et al.  Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis , 1985, Neuroscience Letters.

[57]  J. Bastian The range of electrolocation: A comparison of electroreceptor responses and the responses of cerebellar neurons in a gymnotid fish , 1976, Journal of comparative physiology.

[58]  S. Chung,et al.  Hearing in the frog: a neurophysiological study of the auditory response in the midbrain , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[59]  N Suga,et al.  Specialized subsystems for processing biologically important complex sounds: cross-correlation analysis for ranging in the bat's brain. , 1990, Cold Spring Harbor symposia on quantitative biology.

[60]  H. Münz,et al.  Single unit activity in the peripheral lateral line system of the cichlid fishSarotherodon niloticus L. , 1985, Journal of Comparative Physiology A.

[61]  S. Echteler Tonotopic organization in the midbrain of a teleost fish , 1985, Brain Research.

[62]  H. Hoagland ELECTRICAL RESPONSES FROM THE LATERAL-LINE NERVES OF CATFISH. I , 1933, The Journal of general physiology.

[63]  Albert S. Feng,et al.  Deficit in object detection (electrolocation) following interruption of cerebellar function in the weakly electric fish,Apteronotus albifrons , 1977, Brain Research.

[64]  Somatosensory and cerebellar influences on compensation of labyrinthine lesions. , 1979, Progress in brain research.

[65]  C E Carr,et al.  Laminar organization of the afferent and efferent systems of the torus semicircularis of Gymnotiform fish: Morphological substrates for parallel processing in the electrosensory system , 1981, The Journal of comparative neurology.

[66]  Olav Sand,et al.  The Lateral Line and Sound Reception , 1981 .

[67]  D. W. Jensen Reflex control of acute postural asymmetry and compensatory symmetry after a unilateral vestibular lesion , 1979, Neuroscience.

[68]  E. C. Berkowitz,et al.  Functional properties of spinal pathways in the carp, cyprinus carpio L. , 1956, The Journal of comparative neurology.

[69]  T. Bullock,et al.  Comparison of electroreceptor, mechanoreceptor and optic evoked potentials in the brain of some rays and sharks , 1974, Journal of comparative physiology.

[70]  G. Langner,et al.  Functional organization of some auditory nuclei in the Guinea Fowl demonstrated by the 2-Deoxyglucose technique , 2004, Cell and Tissue Research.

[71]  D. Caird,et al.  A simple cerebellar system: The lateral line lobe of the goldfish , 1978, Journal of comparative physiology.

[72]  Albert S. Feng,et al.  Frequency representation in the dorsal medullary nucleus of the leopard frog,Rana p. pipiens , 1981, Journal of comparative physiology.

[73]  T. Pitcher Behaviour of Teleost Fishes , 1986 .

[74]  J. Gray,et al.  Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[75]  J. Bastian Receptive fields of cerebellar cells receiving exteroceptive input in a Gymnotid fish. , 1975, Journal of neurophysiology.

[76]  Ad. J. Kalmijn,et al.  Hydrodynamic and Acoustic Field Detection , 1988 .

[77]  Determination of Source-Distance by the Surface-Feeding Fishes Aplocheilus lineatus (Cyprinodontidae) and Pantodon buchholzi (Pantodontidae) , 1984 .

[78]  O. Trujillo-Cenóz Some aspects of the structural organization of the intermediate retina of dipterans. , 1965, Journal of ultrastructure research.

[79]  R. Josephson COLONIAL RESPONSES OF HYDROID POLYPS , 1961 .

[80]  M. Biederman-Thorson Auditory responses of neurones in the lateral mesencephalic nucleus (inferior colliculus) of the Barbary dove , 1967, The Journal of physiology.

[81]  Egil Alnæs Lateral line input to the crista cerebellaris in the eel. Field potentials and histology. , 1973 .

[82]  P. E. Pickens,et al.  CONTROL OF LUMINESCENCE IN HEMICHORDATES AND SOME PROPERTIES OF A NERVE NET SYSTEM. , 1964, The Journal of experimental biology.

[83]  John Palka,et al.  An inhibitory process influencing visual responses in a fibre of the ventral nerve cord of locusts , 1967 .

[84]  E. Knudsen Functional organization in electroreceptive midbrain of the catfish. , 1978, Journal of neurophysiology.

[85]  D. H. Paul,et al.  Studies on a primitive cerebellar cortex III. The projection of the anterior lateral-line nerve to the lateral-line lobes of the dogfish brain , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[86]  N. Suga,et al.  Neurophysiological analysis of echolocation in bats , 1972 .

[87]  Gerard G. Harris,et al.  Evidence that the Lateral‐Line Organ Responds to Near‐Field Displacements of Sound Sources in Water , 1962 .

[88]  E. Vandenbussche,et al.  Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurones. , 1967, Archives internationales de physiologie et de biochimie.

[89]  M M Merzenich,et al.  Representation of the cochlea within the inferior colliculus of the cat. , 1974, Brain research.

[90]  J. Palka,et al.  Diffraction and Visual Acuity of Insects , 1965, Science.

[91]  J. E. Rose,et al.  A metal-filled microelectrode. , 1953, Science.

[92]  Walter Heiligenberg,et al.  Principles of Electrolocation and Jamming Avoidance in Electric Fish , 1977, Studies of Brain Function.

[93]  O. Grüsser,et al.  Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch , 1968, Zeitschrift für vergleichende Physiologie.

[94]  J. Segaar,et al.  Telencephalon and Behaviour in Gasterosteus Aculeatus , 1961 .

[95]  H. Bleckmann,et al.  The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray,Platyrhinoidis triseriata (Elasmobranchii) , 1987, Journal of Comparative Physiology A.

[96]  A. Roberts,et al.  Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response. , 1968, The Journal of experimental biology.

[97]  L. Crispino Modification of responses from specific sensory systems in midbrain by cerebellar stimulation: experiments on a teleost fish. , 1983, Journal of neurophysiology.