Convex Relaxations and Integrality Gaps

We discuss the effectiveness of linear and semidefinite relaxations in approximating the optimum for combinatorial optimization problems. Various hierarchies of these relaxations, such as the ones defined by Lovasz and Schrijver, Sherali and Adams, and Lasserre generate increasingly strong linear and semidefinite programming relaxations starting from a basic one. We survey some positive applications of these hierarchies, where their use yields improved approximation algorithms. We also discuss known lower bounds on the integrality gaps of relaxations arising from these hierarchies, demonstrating limits on the applicability of such hierarchies for certain optimization problems.

[1]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[2]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[3]  Eugene L. Lawler,et al.  Fast approximation algorithms for knapsack problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  Eugene L. Lawler,et al.  Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[5]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[6]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[7]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[8]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[9]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[10]  Avrim Blum,et al.  New approximation algorithms for graph coloring , 1994, JACM.

[11]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[12]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[13]  Uriel Feige,et al.  Zero knowledge and the chromatic number , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[14]  David R. Karger,et al.  An Õ(n^{3/14})-Coloring Algorithm for 3-Colorable Graphs , 1997, Information Processing Letters.

[15]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[16]  Jon M. Kleinberg,et al.  The Lovász Theta Function and a Semidefinite Programming Relaxation of Vertex Cover , 1998, SIAM J. Discret. Math..

[17]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[18]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.

[19]  E. Ben-Sasson,et al.  Expansion in proof complexity. (הרחבה ומורכבות הוכחות.) , 2001 .

[20]  Benny Sudakov,et al.  Approximating coloring and maximum independent sets in 3-uniform hypergraphs , 2001, SODA '01.

[21]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[22]  Béla Bollobás,et al.  Proving integrality gaps without knowing the linear program , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[23]  Moses Charikar,et al.  On semidefinite programming relaxations for graph coloring and vertex cover , 2002, SODA '02.

[24]  Uri Zwick,et al.  Coloring k-colorable graphs using relatively small palettes , 2002, J. Algorithms.

[25]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[26]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[27]  Toniann Pitassi,et al.  Rank bounds and integrality gaps for cutting planes procedures , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[28]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[29]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[30]  Michael Alekhnovich,et al.  Towards strong nonapproximability results in the Lovasz-Schrijver hierarchy , 2005, STOC.

[31]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into 1 (Extended Abstract) , 2005 .

[32]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[33]  Nisheeth K. Vishnoi,et al.  The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l/sub 1/ , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[34]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[35]  Sanjeev Arora,et al.  New approximation guarantee for chromatic number , 2006, STOC '06.

[36]  Iannis Tourlakis,et al.  New Lower Bounds for Vertex Cover in the Lovasz-Schrijver Hierarchy , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[37]  Y. Rabani,et al.  Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.

[38]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[39]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[40]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[41]  Toniann Pitassi,et al.  Rank Bounds and Integrality Gaps for Cutting Planes Procedures , 2006, Theory Comput..

[42]  Uriel Feige,et al.  Random 3CNF formulas elude the Lovasz theta function , 2006, Electron. Colloquium Comput. Complex..

[43]  Eden Chlamtác,et al.  Approximation Algorithms Using Hierarchies of Semidefinite Programming Relaxations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[44]  Madhur Tulsiani,et al.  Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut , 2007, STOC '07.

[45]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[46]  Madhur Tulsiani,et al.  A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[47]  Stefan Dziembowski,et al.  Intrusion-Resilient Secret Sharing , 2007, FOCS 2007.

[48]  Moses Charikar,et al.  Near-optimal algorithms for maximum constraint satisfaction problems , 2007, SODA '07.

[49]  T. Pitassi,et al.  Integrality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver Hierarchy , 2007, FOCS 2007.

[50]  Sandy Irani,et al.  The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[51]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[52]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[53]  Monique Laurent,et al.  The Operator Psi for the Chromatic Number of a Graph , 2008, SIAM J. Optim..

[54]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[55]  M. Laurent THE OPERATOR FOR THE CHROMATIC NUMBER OF AGRAPH , 2008 .

[56]  Subhash Khot,et al.  SDP Integrality Gaps with Local ell_1-Embeddability , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[57]  Moses Charikar,et al.  Integrality gaps for Sherali-Adams relaxations , 2009, STOC '09.

[58]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[59]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[60]  Venkatesan Guruswami,et al.  MaxMin allocation via degree lower-bounded arborescences , 2009, STOC '09.

[61]  Madhur Tulsiani,et al.  Optimal Sherali-Adams Gaps from Pairwise Independence , 2009, APPROX-RANDOM.

[62]  Avner Magen,et al.  Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy , 2009, APPROX-RANDOM.

[63]  Prasad Raghavendra,et al.  Integrality Gaps for Strong SDP Relaxations of UNIQUE GAMES , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[64]  Seshadhri Comandur,et al.  Combinatorial Approximation Algorithms for MaxCut using Random Walks , 2010, ICS.

[65]  Claire Mathieu,et al.  Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack , 2011, IPCO.

[66]  Luca Trevisan,et al.  Max cut and the smallest eigenvalue , 2008, STOC '09.