Monte Carlo Filtering Using Kernel Embedding of Distributions

Recent advances of kernel methods have yielded a framework for representing probabilities using a reproducing kernel Hilbert space, called kernel embedding of distributions. In this paper, we propose a Monte Carlo filtering algorithm based on kernel embeddings. The proposed method is applied to state-space models where sampling from the transition model is possible, while the observation model is to be learned from training samples without assuming a parametric model. As a theoretical basis of the proposed method, we prove consistency of the Monte Carlo method combined with kernel embeddings. Experimental results on synthetic models and real vision-based robot localization confirm the effectiveness of the proposed approach.

[1]  Kenji Fukumizu,et al.  Recovering Distributions from Gaussian RKHS Embeddings , 2014, AISTATS.

[2]  Barbara Caputo,et al.  COLD: The CoSy Localization Database , 2009, Int. J. Robotics Res..

[3]  Sebastian Thrun,et al.  Sub-meter indoor localization in unmodified environments with inexpensive sensors , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Guy Lever,et al.  Modeling transition dynamics in MDPs with RKHS embeddings of conditional distributions , 2011, ArXiv.

[5]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[6]  Ingo Steinwart,et al.  Optimal regression rates for SVMs using Gaussian kernels , 2013 .

[7]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  Andreas Haeberlen,et al.  Practical robust localization over large-scale 802.11 wireless networks , 2004, MobiCom '04.

[9]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[10]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[11]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[12]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[13]  Le Song,et al.  Kernel Bayes' Rule , 2010, NIPS.

[14]  Kostas E. Bekris,et al.  Robotics-Based Location Sensing Using Wireless Ethernet , 2002, MobiCom '02.

[15]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[16]  F. Campillo,et al.  Convolution Particle Filter for Parameter Estimation in General State-Space Models , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Gerwin Schalk,et al.  Prior Knowledge Improves Decoding of Finger Flexion from Electrocorticographic Signals , 2011, Front. Neurosci..

[18]  Le Song,et al.  Kernel Bayes' rule: Bayesian inference with positive definite kernels , 2013, J. Mach. Learn. Res..

[19]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[20]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[21]  Andreas Schulze-Bonhage,et al.  Prediction of arm movement trajectories from ECoG-recordings in humans , 2008, Journal of Neuroscience Methods.

[22]  Le Song,et al.  Nonparametric Tree Graphical Models , 2010, AISTATS.

[23]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[24]  Ben J. A. Kröse,et al.  Auxiliary particle filter robot localization from high-dimensional sensor observations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[25]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[26]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[27]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[28]  Dieter Fox,et al.  Gaussian Processes for Signal Strength-Based Location Estimation , 2006, Robotics: Science and Systems.

[29]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[30]  Guy Lever,et al.  Conditional mean embeddings as regressors , 2012, ICML.

[31]  K. Fukumizu,et al.  Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models , 2013, IEEE Signal Process. Mag..

[32]  Le Song,et al.  Hilbert Space Embeddings of Hidden Markov Models , 2010, ICML.

[33]  Guy Lever,et al.  Modelling transition dynamics in MDPs with RKHS embeddings , 2012, ICML.

[34]  Kenji Fukumizu,et al.  Hilbert Space Embeddings of POMDPs , 2012, UAI.

[35]  Uwe D. Hanebeck,et al.  Analytic moment-based Gaussian process filtering , 2009, ICML '09.

[36]  Sumeetpal S. Singh,et al.  Filtering via approximate Bayesian computation , 2010, Statistics and Computing.

[37]  Le Song,et al.  Kernel Belief Propagation , 2011, AISTATS.

[38]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[39]  Dieter Fox,et al.  GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Alexander J. Smola,et al.  Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.