A State-Space Theory of Uncertain Systems

Abstract This paper presents a tutorial summarizing recent work on generalizing standard state-space results such as stability and performance analysis, realization theory, stability and stabilization, and H ∞ optimal control to uncertain systems described by Linear Fractional Transformations (LFTs)

[1]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[3]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[4]  K. Glover,et al.  Model reduction of LFT systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  Fernando Paganini,et al.  Analysis of implicitly defined systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[6]  Kemin Zhou,et al.  Stabilization of uncertain linear systems: an LFT approach , 1996, IEEE Trans. Autom. Control..

[7]  A. Megretski Necessary and sufficient conditions of stability: a multiloop generalization of the circle criterion , 1993, IEEE Trans. Autom. Control..

[8]  F. Paganini Sets and Constraints in the Analysis Of Uncertain Systems , 1996 .

[9]  F. Paganini,et al.  Interconnection of uncertain behavioral systems for robust control , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[10]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[11]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .

[12]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[13]  Carolyn L. Beck,et al.  Model reduction of multidimensional and uncertain systems , 1994, IEEE Trans. Autom. Control..