Clustering via Similarity Functions : Theoretical Foundations and Algorithms ∗
暂无分享,去创建一个
[1] Mark Braverman,et al. Finding Low Error Clusterings , 2009, COLT.
[2] Maria-Florina Balcan,et al. Approximate clustering without the approximation , 2009, SODA.
[3] R. Zadeh. Interactive Clustering , 2009 .
[4] Maria-Florina Balcan,et al. Clustering with Interactive Feedback , 2008, ALT.
[5] Nir Ailon,et al. Aggregating inconsistent information: Ranking and clustering , 2008 .
[6] Santosh S. Vempala,et al. The Spectral Method for General Mixture Models , 2008, SIAM J. Comput..
[7] S. Ben-David,et al. Which Data Sets are ‘Clusterable’? – A Theoretical Study of Clusterability , 2008 .
[8] Katherine A. Heller,et al. Efficient Bayesian methods for clustering. , 2008 .
[9] Shai Ben-David,et al. Stability of k -Means Clustering , 2007, COLT.
[10] Surajit Chaudhuri,et al. Leveraging aggregate constraints for deduplication , 2007, SIGMOD '07.
[11] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[12] Anirban Dasgupta,et al. Spectral Clustering by Recursive Partitioning , 2006, ESA.
[13] Maria-Florina Balcan,et al. On a theory of learning with similarity functions , 2006, ICML.
[14] Jon M. Kleinberg,et al. On learning mixtures of heavy-tailed distributions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[15] Marina Meila,et al. Comparing clusterings: an axiomatic view , 2005, ICML.
[16] Dimitris Achlioptas,et al. On Spectral Learning of Mixtures of Distributions , 2005, COLT.
[17] S. Vempala,et al. A divide-and-merge methodology for clustering , 2005, PODS '05.
[18] Santosh S. Vempala,et al. On Kernels, Margins, and Low-Dimensional Mappings , 2004, ALT.
[19] Artur Czumaj,et al. Sublinear-Time Approximation for Clustering Via Random Sampling , 2004, ICALP.
[20] Santosh S. Vempala,et al. A spectral algorithm for learning mixture models , 2004, J. Comput. Syst. Sci..
[21] Kamesh Munagala,et al. Local Search Heuristics for k-Median and Facility Location Problems , 2004, SIAM J. Comput..
[22] O. Bousquet. THEORY OF CLASSIFICATION: A SURVEY OF RECENT ADVANCES , 2004 .
[23] Bernhard Schölkopf,et al. Kernel Methods in Computational Biology , 2005 .
[24] Noga Alon,et al. Random sampling and approximation of MAX-CSPs , 2003, J. Comput. Syst. Sci..
[25] Marek Karpinski,et al. Approximation schemes for clustering problems , 2003, STOC '03.
[26] Christopher K. I. Williams. Learning Kernel Classifiers , 2003 .
[27] Marina Meila,et al. Comparing Clusterings by the Variation of Information , 2003, COLT.
[28] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[29] Sudipto Guha,et al. A constant-factor approximation algorithm for the k-median problem (extended abstract) , 1999, STOC '99.
[30] Jon M. Kleinberg,et al. An Impossibility Theorem for Clustering , 2002, NIPS.
[31] Risi Kondor,et al. Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.
[32] Vincent Berry,et al. A Structured Family of Clustering and Tree Construction Methods , 2001, Adv. Appl. Math..
[33] Sanjeev Arora,et al. Learning mixtures of arbitrary gaussians , 2001, STOC '01.
[34] Moses Charikar,et al. Approximating min-sum k-clustering in metric spaces , 2001, STOC '01.
[35] Vijay V. Vazirani,et al. Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.
[36] Leonard Pitt,et al. Sublinear time approximate clustering , 2001, SODA '01.
[37] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[38] David Thomas,et al. The Art in Computer Programming , 2001 .
[39] Santosh S. Vempala,et al. On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[40] Noga Alon,et al. Testing of clustering , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[41] Sanjoy Dasgupta,et al. Learning mixtures of Gaussians , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[42] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[43] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[44] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[45] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[46] Noga Alon,et al. A Spectral Technique for Coloring Random 3-Colorable Graphs , 1997, SIAM J. Comput..
[47] Viggo Kann,et al. Hardness of Approximating Problems on Cubic Graphs , 1997, CIAC.
[48] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[49] D. Welsh,et al. A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .
[50] A. Dress,et al. Weak hierarchies associated with similarity measures--an additive clustering technique. , 1989, Bulletin of mathematical biology.
[51] Leslie G. Valiant,et al. A theory of the learnable , 1984, STOC '84.
[52] Peter Elias,et al. List decoding for noisy channels , 1957 .