A Neurofuzzy-Based Adaptive Predictor for Control of Nonlinear Systems

[1]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[2]  Kotaro Hirasawa,et al.  LimNet-Flexible Learning Network Containing Linear Properties , 1999, J. Adv. Comput. Intell. Intell. Informatics.

[3]  B. Anderson,et al.  Robust model reference adaptive control , 1986 .

[4]  J. W. Modestino,et al.  Adaptive Control , 1998 .

[5]  David M. Burton,et al.  Introduction to Modern Abstract Algebra , 1967 .

[6]  Norihiko Adachi,et al.  An Adaptive Control Method Using Neural Network , 1994 .

[7]  Kotaro Hirasawa,et al.  A Hybrid Quasi-ARMAX Modeling Scheme for Identification of Nonlinear Systems , 1998 .

[8]  Snehasis Mukhopadhyay,et al.  Adaptive control using neural networks and approximate models , 1997, IEEE Trans. Neural Networks.

[9]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[10]  Jerry M. Mendel,et al.  Back-propagation fuzzy system as nonlinear dynamic system identifiers , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[11]  Gang Feng Robust direct adaptive control with least prior knowledge , 1995 .

[12]  Jinglu Hu,et al.  A hybrid quasi-ARMAX modeling scheme for identification and control of nonlinear systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  Gang Feng,et al.  Analysis and design for a class of complex control systems Part I: Fuzzy modelling and identification , 1997, Autom..

[14]  Kotaro Hirasawa,et al.  Adaptive control of nonlinear black-box systems based on universal learning networks , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[15]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[16]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..