Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking

Data association and track-to-track association, two fundamental problems in single-sensor and multi-sensor multi-target tracking, are instances of an NP-hard combinatorial optimization problem known as the multidimensional assignment problem (MDAP). Over the last few years, data-driven approaches to tackling MDAPs in tracking have become increasingly popular. We argue that viewing multi-target tracking as an assignment problem conceptually unifies the wide variety of machine learning methods that have been proposed for data association and track-to-track association. In this survey, we review recent literature, provide rigorous formulations of the assignment problems encountered in multi-target tracking, and review classic approaches used prior to the shift towards data-driven techniques. Recent attempts at using deep learning to solve NP-hard combinatorial optimization problems, including data association, are discussed as well. We highlight representation learning methods for multi-sensor applications and conclude by providing an overview of current multi-target tracking benchmarks.

[1]  James M. Rehg,et al.  Multiple Hypothesis Tracking Revisited , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[2]  Bernt Schiele,et al.  Zero-Shot Learning — The Good, the Bad and the Ugly , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Alexandre Heili,et al.  Exploiting Long-Term Connectivity and Visual Motion in CRF-Based Multi-Person Tracking , 2014, IEEE Transactions on Image Processing.

[4]  Konrad Schindler,et al.  Online Multi-Target Tracking Using Recurrent Neural Networks , 2016, AAAI.

[5]  Klaus C. J. Dietmayer,et al.  The Ko-PER intersection laserscanner and video dataset , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[6]  Charless C. Fowlkes,et al.  Globally-optimal greedy algorithms for tracking a variable number of objects , 2011, CVPR 2011.

[7]  Samy Bengio,et al.  Neural Combinatorial Optimization with Reinforcement Learning , 2016, ICLR.

[8]  Seung-Hwan Bae,et al.  Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Federico Perea,et al.  Greedy and $K$-Greedy Algorithms for Multidimensional Data Association , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Silvio Savarese,et al.  Learning to Track: Online Multi-object Tracking by Decision Making , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[12]  Y. Bar-Shalom,et al.  A generalized S-D assignment algorithm for multisensor-multitarget state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Lily Elefteriadou,et al.  Tracking Vehicles Equipped with Dedicated Short-Range Communication at Traffic Intersections , 2017, DIVANet@MSWiM.

[14]  Jason L. Williams,et al.  Multidimensional assignment by dual decomposition , 2011, 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[15]  Panos M. Pardalos,et al.  A greedy randomized adaptive search procedure for the multitarget multisensor tracking problem , 1997, Network Design: Connectivity and Facilities Location.

[16]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  Guillaume-Alexandre Bilodeau,et al.  Multiple Object Tracking with Kernelized Correlation Filters in Urban Mixed Traffic , 2017, 2017 14th Conference on Computer and Robot Vision (CRV).

[18]  Paolo Braca,et al.  Tracking an unknown number of targets using multiple sensors: A belief propagation method , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[19]  Charless C. Fowlkes,et al.  Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions , 2016, International Journal of Computer Vision.

[20]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[21]  Ian D. Reid,et al.  Data-Driven Approximations to NP-Hard Problems , 2017, AAAI.

[22]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ingmar Posner,et al.  Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks , 2016, AAAI.

[24]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[25]  Konrad Schindler,et al.  Learning by Tracking: Siamese CNN for Robust Target Association , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[26]  Wenhan Luo,et al.  Multiple object tracking: A literature review , 2014, Artif. Intell..

[27]  Guillaume-Alexandre Bilodeau,et al.  Urban Tracker: Multiple object tracking in urban mixed traffic , 2014, IEEE Winter Conference on Applications of Computer Vision.

[28]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[30]  Bernt Schiele,et al.  Monocular 3D pose estimation and tracking by detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[32]  Gang Hua,et al.  Discriminative Tracking by Metric Learning , 2010, ECCV.

[33]  Charless C. Fowlkes,et al.  Learning Optimal Parameters For Multi-target Tracking , 2015, BMVC.

[34]  Chinmay Hegde,et al.  Joint Manifolds for Data Fusion , 2010, IEEE Transactions on Image Processing.

[35]  Le Song,et al.  2 Common Formulation for Greedy Algorithms on Graphs , 2018 .

[36]  Yaacov Ritov,et al.  Tracking Many Objects with Many Sensors , 1999, IJCAI.

[37]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[38]  Luc Van Gool,et al.  A mobile vision system for robust multi-person tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Chongzhao Han,et al.  Graphical models-based track association algorithm , 2007, 2007 10th International Conference on Information Fusion.

[40]  Robert T. Collins,et al.  Multitarget data association with higher-order motion models , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[42]  Ramakant Nevatia,et al.  How does person identity recognition help multi-person tracking? , 2011, CVPR 2011.

[43]  Ramakant Nevatia,et al.  Multi-target tracking by on-line learned discriminative appearance models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Krishna R. Pattipati,et al.  M-best SD assignment algorithm with application to multitarget tracking , 1998, Defense, Security, and Sensing.

[45]  Steven Gold,et al.  Softmax to Softassign: neural network algorithms for combinatorial optimization , 1996 .

[46]  Bohyung Han,et al.  Multi-object Tracking with Quadruplet Convolutional Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[48]  Germán Ros,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[49]  Daniel Cremers,et al.  Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking , 2017, ArXiv.

[50]  Scott W. Linderman,et al.  Reparameterizing the Birkhoff Polytope for Variational Permutation Inference , 2017, AISTATS.

[51]  Jan Feyereisl,et al.  Online Multi-target Tracking by Large Margin Structured Learning , 2012, ACCV.

[52]  Manuel Stuebler,et al.  A fast implementation of the Labeled Multi-Bernoulli filter using gibbs sampling , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[53]  Ramakant Nevatia,et al.  Learning affinities and dependencies for multi-target tracking using a CRF model , 2011, CVPR 2011.

[54]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[55]  Stefan Roth,et al.  MOT16: A Benchmark for Multi-Object Tracking , 2016, ArXiv.

[56]  Lang Hong,et al.  Automated traffic surveillance using fusion of Doppler radar and video information , 2011, Math. Comput. Model..

[57]  Ming-Hsuan Yang,et al.  UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking , 2015, Comput. Vis. Image Underst..

[58]  Silvio Savarese,et al.  Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[59]  Thomas S. Huang,et al.  Multi-metric learning for multi-sensor fusion based classification , 2013, Inf. Fusion.

[60]  Kate Smith-Miles,et al.  Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research , 1999, INFORMS J. Comput..

[61]  Gang Wang,et al.  Tracklet Association with Online Target-Specific Metric Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Stefan Roth,et al.  MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.

[63]  Kuk-Jin Yoon,et al.  Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Bastian Leibe,et al.  Combined image- and world-space tracking in traffic scenes , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[65]  Krishna R. Pattipati,et al.  A Probabilistic computational model for identifying organizational structures from uncertain message data , 2007, 2007 10th International Conference on Information Fusion.

[66]  Yaakov Bar-Shalom,et al.  A multisensor-multitarget data association algorithm for heterogeneous sensors , 1993 .

[67]  Romaric Audigier,et al.  Improving Multi-frame Data Association with Sparse Representations for Robust Near-online Multi-object Tracking , 2016, ECCV.

[68]  Lance M. Kaplan,et al.  Assignment costs for multiple sensor track-to-track association , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[69]  Ian D. Reid,et al.  Joint tracking and segmentation of multiple targets , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Guillaume-Alexandre Bilodeau,et al.  Tracking All Road Users at Multimodal Urban Traffic Intersections , 2016, IEEE Transactions on Intelligent Transportation Systems.

[71]  Dushyant Rao,et al.  Deep tracking in the wild: End-to-end tracking using recurrent neural networks , 2018, Int. J. Robotics Res..

[72]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Konrad Schindler,et al.  Multi-Target Tracking by Discrete-Continuous Energy Minimization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Thomas B. Moeslund,et al.  Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring , 2016, Sensors.

[75]  Alexandre Heili,et al.  Long-Term Time-Sensitive Costs for CRF-Based Tracking by Detection , 2016, ECCV Workshops.

[76]  Samy Bengio,et al.  Order Matters: Sequence to sequence for sets , 2015, ICLR.

[77]  James S. Duncan,et al.  A Multiple Hypothesis Based Method for Particle Tracking and Its Extension for Cell Segmentation , 2013, IPMI.

[78]  Quan Pan,et al.  Detecting, estimating and correcting multipath biases affecting GNSS signals using a marginalized likelihood ratio-based method , 2016, Signal Process..

[79]  Panos M. Pardalos,et al.  Integer programming models for the multidimensional assignment problem with star costs , 2014, Eur. J. Oper. Res..

[80]  Michael Arens,et al.  Instance flow based online multiple object tracking , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[81]  Palash Goyal,et al.  Graph Embedding Techniques, Applications, and Performance: A Survey , 2017, Knowl. Based Syst..

[82]  Jason L. Williams,et al.  Approximate evaluation of marginal association probabilities with belief propagation , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[83]  Ramakant Nevatia,et al.  Global data association for multi-object tracking using network flows , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Martin J. Wainwright,et al.  Data association based on optimization in graphical models with application to sensor networks , 2006, Math. Comput. Model..

[85]  Silvio Savarese,et al.  Recurrent Autoregressive Networks for Online Multi-object Tracking , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[86]  Panos M. Pardalos,et al.  On the number of local minima for the multidimensional assignment problem , 2006, J. Comb. Optim..

[87]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[88]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[89]  Margrit Betke,et al.  Coupling detection and data association for multiple object tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[90]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[91]  Gang Wang,et al.  Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[92]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[93]  Huimin Chen,et al.  Track-to-Track Association Using Attributes , 2007, J. Adv. Inf. Fusion.

[94]  Jason L. Williams,et al.  Data association by loopy belief propagation , 2010, 2010 13th International Conference on Information Fusion.

[95]  Wongun Choi,et al.  Deep Network Flow for Multi-object Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  Panos M. Pardalos,et al.  Randomized parallel algorithms for the multidimensional assignment problem , 2004 .

[97]  Wongun Choi,et al.  Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[98]  Paolo Braca,et al.  A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors , 2016, IEEE Transactions on Signal Processing.

[99]  Jason L. Williams,et al.  Convergence of loopy belief propagation for data association , 2010, 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[100]  James J. Little,et al.  A Linear Programming Approach for Multiple Object Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[101]  Bodo Rosenhahn,et al.  Fusion of Head and Full-Body Detectors for Multi-object Tracking , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[102]  Andrew H. Gee,et al.  Polyhedral Combinatorics and Neural Networks , 1994, Neural Computation.

[103]  Antonio Fernández-Caballero,et al.  Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation , 2013, IWINAC.

[104]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[105]  Klaus C. J. Dietmayer,et al.  Real-time detection and tracking of pedestrians at intersections using a network of laserscanners , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[106]  Le Song,et al.  Discriminative Embeddings of Latent Variable Models for Structured Data , 2016, ICML.

[107]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[108]  Navdeep Jaitly,et al.  Pointer Networks , 2015, NIPS.

[109]  Marc Peter Deisenroth,et al.  Deep Reinforcement Learning: A Brief Survey , 2017, IEEE Signal Processing Magazine.

[110]  Celso C. Ribeiro,et al.  Optimization by GRASP , 2016 .

[111]  Panos M. Pardalos,et al.  Mathematical Programming Techniques for Sensor Networks , 2009, Algorithms.

[112]  Panos M. Pardalos,et al.  Sensors: Theory, Algorithms, and Applications , 2011 .

[113]  Ram Nevatia,et al.  Learning to associate: HybridBoosted multi-target tracker for crowded scene , 2009, CVPR.

[114]  Alon Schclar,et al.  Multi-Sensor Fusion via Reduction of Dimensionality , 2012, ArXiv.

[115]  Ramakant Nevatia,et al.  Robust Object Tracking by Hierarchical Association of Detection Responses , 2008, ECCV.

[116]  Robert Barrett,et al.  Toward V2I communication technology-based solution for reducing road traffic congestion in smart cities , 2015, 2015 International Symposium on Networks, Computers and Communications (ISNCC).

[117]  Nikos Paragios,et al.  Data fusion through cross-modality metric learning using similarity-sensitive hashing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[118]  Chee-Yee Chong,et al.  Graph approaches for data association , 2012, 2012 15th International Conference on Information Fusion.

[119]  Thomas S. Huang,et al.  Heterogeneous multi-metric learning for multi-sensor fusion , 2011, 14th International Conference on Information Fusion.

[120]  Chee-Yee Chong,et al.  Metrics for Feature-Aided Track Association , 2006, 2006 9th International Conference on Information Fusion.

[121]  Bodo Rosenhahn,et al.  Improvements to Frank-Wolfe optimization for multi-detector multi-object tracking , 2017, ArXiv.

[122]  Ian D. Reid,et al.  DeepSetNet: Predicting Sets with Deep Neural Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[123]  Lei Chen,et al.  An efficient message passing algorithm for multi-target tracking , 2009, 2009 12th International Conference on Information Fusion.

[124]  Dimitri P. Bertsekas,et al.  Auction algorithms for network flow problems: A tutorial introduction , 1992, Comput. Optim. Appl..

[125]  Mubarak Shah,et al.  On Duality Of Multiple Target Tracking and Segmentation , 2016, ArXiv.

[126]  Peter Willett,et al.  Track-to-track association with augmented state , 2011, 14th International Conference on Information Fusion.

[127]  Ian D. Reid,et al.  Stable multi-target tracking in real-time surveillance video , 2011, CVPR 2011.

[128]  Aubrey B. Poore,et al.  Some assignment problems arising from multiple target tracking , 2006, Math. Comput. Model..

[129]  Min Yang,et al.  A Hybrid Data Association Framework for Robust Online Multi-Object Tracking. , 2017, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[130]  Songhwai Oh,et al.  Markov chain Monte Carlo data association for general multiple-target tracking problems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[131]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[132]  Y. Bar-Shalom,et al.  An adaptive m-best SD assignment algorithm and parallelization for multitarget tracking , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[133]  Kuo-Chu Chang,et al.  Performance prediction of feature-aided track-to-track association , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[134]  Aubrey B. Poore,et al.  Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking , 1994, Comput. Optim. Appl..

[135]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[136]  Huimin Chen,et al.  Multisensor track-to-track association for tracks with dependent errors , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[137]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[138]  Samuel A. Shapero,et al.  Adaptive semi-greedy search for multidimensional track assignment , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[139]  Robert T. Collins,et al.  Multi-target Tracking by Lagrangian Relaxation to Min-cost Network Flow , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[141]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[142]  G. Shobha,et al.  Siamese Network for Underwater Multiple Object Tracking , 2017, ICMLC.

[143]  Bernt Schiele,et al.  Multi-person Tracking by Multicut and Deep Matching , 2016, ECCV Workshops.

[144]  A. Caponi,et al.  Polynomial time algorithm for data association problem in multitarget tracking , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[145]  Bing Wang,et al.  Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[146]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[147]  Y. Bar-Shalom,et al.  m-best S-D assignment algorithm with application to multitarget tracking , 2001 .

[148]  Scott W. Linderman,et al.  Learning Latent Permutations with Gumbel-Sinkhorn Networks , 2018, ICLR.

[149]  Ramakant Nevatia,et al.  An online learned CRF model for multi-target tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.