Regional variation models of white matter microstructure

Diffusion-weighted MRI (DW-MRI) is a powerful in vivo imaging technique that is particularly sensitive to the underlying microstructure of white matter tissue in the brain. Many models of the DW-MRI signal exist that allow us to relate the signals we measure to various aspects of the tissue structure, including measures of diffusivity, cellularity and even axon size. From histology, we know that many of these microstructure measures display distinct patterns of variation on length scales greater than the average voxel size. However very few methods exist that use this spatial coherence to inform and guide parameter estimation. Instead, most techniques treat each voxel of data independently. This is particularly problematic when estimating parameters such as axon radius which only weakly influence the signal, as the resulting estimates are noisy. Several methods have been proposed that spatially smooth parameter estimates after fitting the model in each voxel. However if the parameter estimates are very noisy, the underlying trend is likely to be obscured. These methods are also unable to account for spatial coupling that may exist between the various parameters. This thesis introduces a novel framework, the Regional Variation Model (RVM), which exploits the underlying spatial coherence within white matter tracts to estimate trends of microstructure variation across large regions of interest. We fit curves describing parameter variation directly to the diffusion-weighted signals which should capture spatial changes in a more natural way as well as reducing the effects of noise. This allows for more precise estimates of a range of microstructure indices, including axon radius. The resulting curves, which show how microstructure parameters vary spatially through white matter regions, can also be used to detect groupwise differences with potentially greater power than traditional methods.

[1]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[2]  S. F. Witelson Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. , 1989, Brain : a journal of neurology.

[3]  David G. Gadian,et al.  A random effects modelling approach to the crossing-fibre problem in tractography , 2009, NeuroImage.

[4]  Timothy Edward John Behrens,et al.  Training induces changes in white matter architecture , 2009, Nature Neuroscience.

[5]  Daniel C. Alexander,et al.  Regularized super-resolution for diffusion MRI , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[6]  John C Gore,et al.  Sensitivity of MR diffusion measurements to variations in intracellular structure: Effects of nuclear size , 2009, Magnetic resonance in medicine.

[7]  Philippe Lambert,et al.  Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models , 2007, Comput. Stat. Data Anal..

[8]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[9]  Daniel C. Alexander,et al.  A spatial variation model of white matter microstructure , 2010, MICCAI 2010.

[10]  N. Intrator,et al.  Free water elimination and mapping from diffusion MRI , 2009, Magnetic resonance in medicine.

[11]  Cheng Guan Koay,et al.  Least Squares Approaches to Diffusion Tensor Estimation , 2010 .

[12]  S. Griffis EDITOR , 1997, Journal of Navigation.

[13]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[14]  C. Andersen,et al.  In vivo estimation of water content in cerebral white matter of brain tumour patients and normal individuals: Towards a quantitative brain oedema definition , 2005, Acta Neurochirurgica.

[15]  D. Burke,et al.  Functional Anatomy of the Spinal Cord , 1975 .

[16]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[17]  Symms,et al.  Optimal acquisition order of diffusion-weighted measurements on a sphere , 2005 .

[18]  Derek K. Jones,et al.  Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia , 2006, Human brain mapping.

[19]  I. Griffiths,et al.  White Matter Structure: A Microscopist’s View , 2009 .

[20]  Daniel S. Reich,et al.  Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis , 2011, NeuroImage.

[21]  Paul A. Yushkevich,et al.  Evaluation of Shape-Based Normalization in the Corpus Callosum for White Matter Connectivity Analysis , 2007, MICCAI.

[22]  S. Rice Mathematical analysis of random noise , 1944 .

[23]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[24]  D. C. Douglass,et al.  Diffusion in Paraffin Hydrocarbons , 1958 .

[25]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[26]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[27]  Paul M. Thompson,et al.  Along-tract statistics allow for enhanced tractography analysis , 2012, NeuroImage.

[28]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[29]  Fei Wang,et al.  Asymmetry analysis of cingulum based on scale‐invariant parameterization by diffusion tensor imaging , 2005, Human brain mapping.

[30]  A. Anderson,et al.  Reduction of noise in diffusion tensor images using anisotropic smoothing , 2005, Magnetic resonance in medicine.

[31]  Paul A. Yushkevich,et al.  Structure-specific statistical mapping of white matter tracts , 2007, NeuroImage.

[32]  S. Lawrie,et al.  Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study , 2003, British Journal of Psychiatry.

[33]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[34]  V. Leitáo,et al.  Computer Graphics: Principles and Practice , 1995 .

[35]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[36]  Weili Lin Principles of magnetic resonance imaging: a signal processing perspective [Book Review] , 2000, IEEE Engineering in Medicine and Biology Magazine.

[37]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[38]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[39]  Jennifer A McNab,et al.  Sensitivity of diffusion weighted steady state free precession to anisotropic diffusion , 2008, Magnetic resonance in medicine.

[40]  Geoff J.M. Parker,et al.  Probabilistic Fiber Tracking , 2010 .

[41]  Sen,et al.  Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments: Simple pore geometries. , 1992, Physical review. B, Condensed matter.

[42]  J. Rosenthal,et al.  Markov Chain Monte Carlo , 2018 .

[43]  Paul T. Callaghan,et al.  Pulsed-Gradient Spin-Echo NMR for Planar, Cylindrical, and Spherical Pores under Conditions of Wall Relaxation , 1995 .

[44]  Stephen M. Smith,et al.  Crossing fibres in tract-based spatial statistics , 2010, NeuroImage.

[45]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[46]  G. Barker,et al.  Investigating regional white matter in schizophrenia using diffusion tensor imaging , 2002, Neuroreport.

[47]  Francisco Aboitiz,et al.  Species Differences and Similarities in the Fine Structure of the Mammalian Corpus callosum , 2001, Brain, Behavior and Evolution.

[48]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[49]  Jan Sijbers,et al.  Comparing isotropic and anisotropic smoothing for voxel‐based DTI analyses: A simulation study , 2009, Human brain mapping.

[50]  A. Peters The effects of normal aging on myelin and nerve fibers: A review , 2002, Journal of neurocytology.

[51]  Daniel C. Alexander,et al.  Polynomial models of the spatial variation of axon radius in white matter , 2010 .

[52]  W. Eric L. Grimson,et al.  Findings in Schizophrenia by Tract-Oriented DT-MRI Analysis , 2008, MICCAI.

[53]  A. Alexander Deterministic White Matter Tractography , 2010 .

[54]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[55]  John H. Gilmore,et al.  Group analysis of DTI fiber tract statistics with application to neurodevelopment , 2009, NeuroImage.

[56]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[57]  Daniel C Alexander,et al.  Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR. , 2010, Journal of magnetic resonance.

[58]  Matthew D. Hall,et al.  Dependence of Axon Diameter Index on Maximum Gradient Strength , 2010 .

[59]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[60]  Physics of Diffusion , 2010 .

[61]  Guido Gerig,et al.  A Statistical Shape Model of Individual Fiber Tracts Extracted from Diffusion Tensor MRI , 2004, MICCAI.

[62]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[63]  Haruyasu Yamada,et al.  Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis , 2002, Neurobiology of Aging.

[64]  G. Belle Statistical rules of thumb , 2002 .

[65]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[66]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[67]  Simon R. Arridge,et al.  Diffusion tensor magnetic resonance image regularization , 2004, Medical Image Anal..

[68]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[69]  Tony F. Chan,et al.  Total Variation Regularization of Matrix-Valued Images , 2007, Int. J. Biomed. Imaging.

[70]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[71]  David L. Thomas,et al.  Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[72]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[73]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[74]  Veerabhadran Baladandayuthapani,et al.  Spatially Adaptive Bayesian Penalized Regression Splines (P-splines) , 2005 .

[75]  James G. Pipe Pulse Sequences for Diffusion-weighted MRI , 2009 .

[76]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[77]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[78]  Charles S Springer,et al.  Equilibrium water exchange between the intra‐ and extracellular spaces of mammalian brain , 2003, Magnetic resonance in medicine.

[79]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[80]  Timothy F. Cootes,et al.  Statistical models of appearance for medical image analysis and computer vision , 2001, SPIE Medical Imaging.

[81]  Timothy Edward John Behrens,et al.  Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI , 2012, NeuroImage.

[82]  Leonard K. Kaczmarek,et al.  The Neuron: Cell and Molecular Biology , 1991 .

[83]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[84]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[85]  Santiago Aja-Fernández,et al.  Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. , 2009, Magnetic resonance imaging.

[86]  Takayuki Obata,et al.  Age-related degeneration of corpus callosum measured with diffusion tensor imaging , 2006, NeuroImage.

[87]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[88]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[89]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[90]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[91]  Simon Walker-Samuel,et al.  Improving apparent diffusion coefficient estimates and elucidating tumor heterogeneity using Bayesian adaptive smoothing , 2011, Magnetic resonance in medicine.

[92]  Jeremy J. Flint,et al.  Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue — Implications for MRI studies of human autopsy samples , 2009, NeuroImage.

[93]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[94]  Christian Beaulieu,et al.  What Makes Diffusion Anisotropic in the Nervous System , 2010 .

[95]  Daniel Rueckert,et al.  Identifying population differences in whole-brain structural networks: A machine learning approach , 2010, NeuroImage.

[96]  Mark F. Lythgoe,et al.  Two-Compartment Models of the Diffusion MR Signal in Brain White Matter , 2009, MICCAI.

[97]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[98]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[99]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[100]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[101]  Martin J. Graves,et al.  MRI from Picture to Proton , 2017 .

[102]  G Price,et al.  The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[103]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[104]  J. Valk,et al.  Magnetic Resonance of Myelination and Myelin Disorders , 1989 .

[105]  C. H. Neuman Spin echo of spins diffusing in a bounded medium , 1974 .

[106]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[107]  N. Uranova,et al.  Electron microscopy of oligodendroglia in severe mental illness , 2001, Brain Research Bulletin.

[108]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[109]  Rick Archibald,et al.  A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity , 2002, IEEE Transactions on Medical Imaging.

[110]  Ashish Raj,et al.  Spatial HARDI: Improved visualization of complex white matter architecture with Bayesian spatial regularization , 2011, NeuroImage.

[111]  W. Bradley,et al.  MRI: The Basics , 1997 .

[112]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[113]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[114]  Daniel C. Alexander,et al.  Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI , 2009, IEEE Transactions on Medical Imaging.

[115]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[116]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[117]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[118]  Sébastien Ourselin,et al.  Computation of the mid-sagittal plane in 3-D brain images , 2002, IEEE Transactions on Medical Imaging.

[119]  Simon J. D. Prince,et al.  Computer Vision: Models, Learning, and Inference , 2012 .

[120]  Daniel C. Alexander,et al.  In-Vivo Estimates of Axonal Characteristics Using Optimized Diffusion MRI Protocols for Single Fibre Orientation , 2010, MICCAI.

[121]  L. Goddard Information Theory , 1962, Nature.

[122]  D. Javitt,et al.  BRAIN IMAGING NEUROREPORT , 2005 .

[123]  Per Linse,et al.  The NMR Self-Diffusion Method Applied to Restricted Diffusion. Simulation of Echo Attenuation from Molecules in Spheres and between Planes , 1993 .

[124]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[125]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[126]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[127]  Jürgen Finsterbusch,et al.  Compartment size estimation with double wave vector diffusion‐weighted imaging , 2008, Magnetic resonance in medicine.

[128]  William S. Price,et al.  Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion. Part 1. Basic Theory , 1997 .

[129]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[130]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[131]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[132]  Hui Zhang,et al.  A Bayesian framework for modelling the regional variation of white matter microstructure , 2011, MIUA.

[133]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[134]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[135]  K. Lim,et al.  Age‐related decline in brain white matter anisotropy measured with spatially corrected echo‐planar diffusion tensor imaging , 2000, Magnetic resonance in medicine.

[136]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[137]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[138]  P. V. van Zijl,et al.  Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. , 1994, Journal of magnetic resonance. Series B.

[139]  Dennis D. Cox,et al.  Pointwise testing with functional data using the Westfall–Young randomization method , 2008 .

[140]  D. Alexander A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features , 2008, Magnetic resonance in medicine.

[141]  R. Quester,et al.  The shrinkage of the human brain stem during formalin fixation and embedding in paraffin , 1997, Journal of Neuroscience Methods.

[142]  J. Schnabel,et al.  Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[143]  I. Corouge,et al.  Analysis of brain white matter via fiber tract modeling , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[144]  J. Jonas,et al.  Histomorphometry of the human optic nerve. , 1990, Investigative ophthalmology & visual science.

[145]  Thomas C. M. Lee,et al.  On algorithms for ordinary least squares regression spline fitting: A comparative study , 2002 .

[146]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[147]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[148]  T. Crow,et al.  The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. , 1999, Brain : a journal of neurology.

[149]  Guido Gerig,et al.  Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. , 2006, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention.

[150]  Daniel C. Alexander,et al.  MicroTrack: An Algorithm for Concurrent Projectome and Microstructure Estimation , 2010, MICCAI.

[151]  P. Basser,et al.  Introduction to Diffusion MR , 2009 .

[152]  Susanne Schnell,et al.  Global fiber reconstruction becomes practical , 2011, NeuroImage.

[153]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[154]  M Reiser,et al.  [Magnetic resonance angiography]. , 1994, Der Radiologe.

[155]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[156]  Suyash P. Awate,et al.  A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features , 2010, Medical Image Anal..

[157]  D. Laidlaw,et al.  Generalizing Diffusion Tensor Model using Probabilistic Inference in Markov Random Fields , 2010 .

[158]  Carolyn Kaut,et al.  MRI in Practice , 1993 .

[159]  Isabelle Bloch,et al.  Towards inference of human brain connectivity from MR diffusion tensor data , 2001, Medical Image Anal..

[160]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[161]  Heidi Johansen-Berg,et al.  Probabilistic tractography of the optic radiations—An automated method and anatomical validation , 2010, NeuroImage.

[162]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[163]  Roland Bammer,et al.  EPI-Based Pulse Sequences for Diffusion Tensor MRI , 2010 .

[164]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[165]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[166]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[167]  J. S. Murday,et al.  Self‐Diffusion Coefficient of Liquid Lithium , 1968 .

[168]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[169]  Iwao Kanno,et al.  Automatic detection of the mid-sagittal plane in 3-D brain images , 1997, IEEE Transactions on Medical Imaging.

[170]  A. MacKay,et al.  Magnetic resonance imaging of myelin , 2007, Neurotherapeutics.

[171]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.

[172]  P. Basser,et al.  In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. , 2009, Brain : a journal of neurology.

[173]  J. Zasadzinski,et al.  Synergistic interactions of lipids and myelin basic protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[174]  David H. Laidlaw,et al.  Fine-grained comparison of anisotropy differences between groups of white matter tracts , 2003 .

[175]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[176]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[177]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[178]  Janez Stepišnik,et al.  Time-dependent self-diffusion by NMR spin-echo , 1993 .

[179]  W. Marsden I and J , 2012 .

[180]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[181]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[182]  J. Mixter Fast , 2012 .

[183]  W. Eric L. Grimson,et al.  Statistical Shape Analysis Using Fixed Topology Skeletons: Corpus Callosum Study , 1999, IPMI.

[184]  J. Frahm,et al.  Diffusion imaging of the human brain in vivo using high‐speed STEAM MRI , 1992, Magnetic resonance in medicine.

[185]  N. Uranova,et al.  Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium , 2004, Schizophrenia Research.

[186]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[187]  A. Webb,et al.  Introduction to biomedical imaging , 2002 .