Exponential Synchronization Rate of Kuramoto Oscillators in the Presence of a Pacemaker

The exponential synchronization rate is addressed for Kuramoto oscillators in the presence of a pacemaker. When natural frequencies are identical, we prove that synchronization can be ensured even when the phases are not constrained in an open half-circle, which improves the existing results in the literature. We derive a lower bound on the exponential synchronization rate, which is proven to be an increasing function of pacemaker strength, but may be an increasing or decreasing function of local coupling strength. A similar conclusion is obtained for phase locking when the natural frequencies are non-identical. An approach to trapping phase differences in an arbitrary interval is also given, which ensures synchronization in the sense that synchronization error can be reduced to an arbitrary level.

[1]  Mark W. Spong,et al.  On Exponential Synchronization of Kuramoto Oscillators , 2009, IEEE Transactions on Automatic Control.

[2]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[3]  Erik D. Herzog,et al.  Neurons and networks in daily rhythms , 2007, Nature Reviews Neuroscience.

[4]  F. Paganini,et al.  Global considerations on the Kuramoto model of sinusoidally coupled oscillators , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  Z. Mainen,et al.  Speed and accuracy of olfactory discrimination in the rat , 2003, Nature Neuroscience.

[6]  Yongqiang Wang,et al.  Optimal Phase Response Functions for Fast Pulse-Coupled Synchronization in Wireless Sensor Networks , 2012, IEEE Transactions on Signal Processing.

[7]  Hermann Kopetz,et al.  Clock Synchronization in Distributed Real-Time Systems , 1987, IEEE Transactions on Computers.

[8]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[9]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[10]  A. Jadbabaie,et al.  Synchronization in Oscillator Networks: Switching Topologies and Non-homogeneous Delays , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[11]  Kristi A. Morgansen,et al.  On controlled sinusoidal phase coupling , 2009, 2009 American Control Conference.

[12]  M. di Bernardo,et al.  Pinning control of complex networks via edge snapping. , 2011, Chaos.

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[15]  A. Jadbabaie,et al.  Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization , 2010, IEEE Transactions on Automatic Control.

[16]  P. Tass,et al.  Macroscopic entrainment of periodically forced oscillatory ensembles. , 2011, Progress in biophysics and molecular biology.

[17]  Soon-Jo Chung,et al.  On synchronization of coupled Hopf-Kuramoto oscillators with phase delays , 2010, 49th IEEE Conference on Decision and Control (CDC).

[18]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[19]  Yongqiang Wang,et al.  On influences of global and local cues on the rate of synchronization of oscillator networks , 2011, Autom..

[20]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[21]  Enrique Mallada,et al.  Synchronization of phase-coupled oscillators with arbitrary topology , 2010, Proceedings of the 2010 American Control Conference.

[22]  Yongqiang Wang,et al.  Increasing Sync Rate of Pulse-Coupled Oscillators via Phase Response Function Design: Theory and Application to Wireless Networks , 2012, IEEE Transactions on Control Systems Technology.

[23]  A. Mikhailov,et al.  Entrainment of randomly coupled oscillator networks by a pacemaker. , 2004, Physical review letters.

[24]  Yongqiang Wang,et al.  Energy-Efficient Pulse-Coupled Synchronization Strategy Design for Wireless Sensor Networks Through Reduced Idle Listening , 2012, IEEE Transactions on Signal Processing.

[25]  D. Aeyels,et al.  Stability of phase locking in a ring of unidirectionally coupled oscillators , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  Alain Sarlette,et al.  Synchronization and balancing on the N-torus , 2007, Syst. Control. Lett..

[27]  Oliver Mason,et al.  Global Phase-Locking in Finite Populations of Phase-Coupled Oscillators , 2007, SIAM J. Appl. Dyn. Syst..

[28]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[29]  Rodolphe Sepulchre,et al.  Geometry and Symmetries in Coordination Control , 2009 .

[30]  S. Strogatz,et al.  Stability diagram for the forced Kuramoto model. , 2008, Chaos.

[31]  Hidetsugu Sakaguchi,et al.  Cooperative Phenomena in Coupled Oscillator Systems under External Fields , 1988 .

[32]  Manfredi Maggiore,et al.  State Agreement for Continuous-Time Coupled Nonlinear Systems , 2007, SIAM J. Control. Optim..