A geometric approach to properties of the discrete-time cellular neural network

Using the available theory on linear threshold logic, the Discrete-Time Cellular Neural Network (DTCNN) is studied from a geometrical point of view, Different modes of operation are specified. A bound on the number of possible mappings is given for the case of binary inputs. The mapping process in a cell of the network is interpreted in the input space and the parameter space. Worst-case and average-case accuracy conditions are given, and a sufficient worst-case bound on the number of bits required to store the network parameters for the case of binary input signals is derived. Methods for optimizing the robustness of DTCNN parameters for certain regions of the parameter space are discussed. >

[1]  Eric Goles Ch.,et al.  The Convergence of Symmetric Threshold Automata , 1981, Inf. Control..

[2]  W. Little The existence of persistent states in the brain , 1974 .

[3]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[4]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[5]  Josef A. Nossek,et al.  The generalized AdaTron algorithm , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[6]  Michael Biehl,et al.  Perceptron learning by constrained optimization: the AdaTron algorithm , 1991 .

[7]  Hubert Harrer Discrete time cellular neural networks , 1992, Int. J. Circuit Theory Appl..

[8]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[9]  Jehoshua Bruck On the convergence properties of the Hopfield model , 1990, Proc. IEEE.

[10]  P. Raghavan,et al.  Learning in threshold networks , 1988, COLT '88.

[11]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry, Expanded Edition , 1987 .

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  C L Sheng,et al.  Threshold Logic , 1969 .

[14]  and C.L. Coates Lewis,et al.  Threshold Logic , 1967 .

[15]  Eric Goles Ch.,et al.  Decreasing energy functions as a tool for studying threshold networks , 1985, Discret. Appl. Math..

[16]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[17]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..