Optimally Robust Private Information Retrieval

We give a protocol for multi-server information-theoretic private information retrieval which achieves the theoretical limit for Byzantine robustness. That is, the protocol can allow a client to successfully complete queries and identify server misbehavior in the presence of the maximum possible number of malicious servers. We have implemented our scheme and it is extremely fast in practice: up to thousands of times faster than previous work. We achieve these improvements by using decoding algorithms for error-correcting codes that take advantage of the practical scenario where the client is interested in multiple blocks of the database.

[1]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[2]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[3]  Silvio Micali,et al.  Optimal Error Correction Against Computationally Bounded Noise , 2005, TCC.

[4]  Philippe Gaborit,et al.  A Lattice-Based Computationally-Efficient Private Information Retrieval Protocol , 2007, IACR Cryptol. ePrint Arch..

[5]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[6]  Carmela Troncoso,et al.  PIR-Tor: Scalable Anonymous Communication Using Private Information Retrieval , 2011, USENIX Security Symposium.

[7]  Nadia Heninger,et al.  Approximate common divisors via lattices , 2011, IACR Cryptol. ePrint Arch..

[8]  Radu Sion,et al.  On the Computational Practicality of Private Information Retrieval , 2006 .

[9]  Ian Goldberg,et al.  Improving the Robustness of Private Information Retrieval , 2007 .

[10]  J. Gathen Hensel and Newton methods in valuation rings , 1984 .

[11]  Nick Mathewson,et al.  The pynchon gate: a secure method of pseudonymous mail retrieval , 2005, WPES '05.

[12]  Ian Goldberg,et al.  Revisiting the Computational Practicality of Private Information Retrieval , 2011, Financial Cryptography.

[13]  Amos Beimel,et al.  Robust Information-Theoretic Private Information Retrieval , 2002, Journal of Cryptology.

[14]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[16]  Nick Mathewson,et al.  Tor: The Second-Generation Onion Router , 2004, USENIX Security Symposium.

[17]  Niv Gilboa,et al.  Computationally private information retrieval (extended abstract) , 1997, STOC '97.

[18]  Jeremy Clark,et al.  Scantegrity II Municipal Election at Takoma Park: The First E2E Binding Governmental Election with Ballot Privacy , 2010, USENIX Security Symposium.

[19]  Ian Goldberg,et al.  Achieving Efficient Query Privacy for Location Based Services , 2010, Privacy Enhancing Technologies.

[20]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[21]  Arthur Stanley,et al.  Yes , 1923, The Hospital and health review.

[22]  Ian Goldberg,et al.  Privacy-Preserving Queries over Relational Databases , 2010, Privacy Enhancing Technologies.

[23]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[24]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[25]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[26]  Tal Malkin,et al.  A Random Server Model for Private Information Retrieval or How to Achieve Information Theoretic PIR Avoiding Database Replication , 1998, RANDOM.

[27]  William I. Gasarch,et al.  A Survey on Private Information Retrieval (Column: Computational Complexity) , 2004, Bull. EATCS.

[28]  Dmitri Asonov Private Information Retrieval – An Overview and Current Trends , 2001 .

[29]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[30]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[31]  Moni Naor,et al.  Private Information Retrieval by Keywords , 1998, IACR Cryptol. ePrint Arch..

[32]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[33]  David Chaum,et al.  Untraceable electronic mail, return addresses, and digital pseudonyms , 1981, CACM.