The neural basis of decision-making during sensemaking: Implications for human-system interaction

We have created a high-fidelity model of 9 regions of the brain involved in making sense of complex and uncertain situations. Sense making is a proactive form of situation awareness requiring sifting through information of various types to form hypotheses about evolving situations. The MINDS model (Mirroring Intelligence in a Neural Description of Sensemaking) reveals the neural principles and cognitive tradeoffs that explain weaknesses in human reasoning and decision-making.

[1]  Trenton E. Kriete,et al.  Strategic Cognitive Sequencing: A Computational Cognitive Neuroscience Approach , 2013, Comput. Intell. Neurosci..

[2]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[3]  P. Holland,et al.  Removal of Cholinergic Input to Rat Posterior Parietal Cortex Disrupts Incremental Processing of Conditioned Stimuli , 1998, The Journal of Neuroscience.

[4]  F. H. Lopes da Silva,et al.  Networks of the Hippocampal Memory System of the Rat: The Pivotal Role of the Subiculum a , 2000, Annals of the New York Academy of Sciences.

[5]  Hongbin Wang,et al.  Perception of randomness: On the time of streaks , 2010, Cognitive Psychology.

[6]  Andreas Nieder,et al.  Contributions of primate prefrontal and posterior parietal cortices to length and numerosity representation. , 2009, Journal of neurophysiology.

[7]  Thomas E. Hazy,et al.  Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[9]  Jeffrey L. Krichmar,et al.  Top-Down Executive Control Drives Reticular-Thalamic Inhibition and Relays Cortical Information in a Large-Scale Neurocognitive Model , 2013, FLAIRS.

[10]  Jean-Marc Fellous,et al.  Hippocampal Anatomy Supports the Use of Context in Object Recognition: A Computational Model , 2013, Comput. Intell. Neurosci..

[11]  Hongbin Wang,et al.  Latent structure in random sequences drives neural learning toward a rational bias , 2015, Proceedings of the National Academy of Sciences.

[12]  M. Walton,et al.  Neuroscience of foraging , 2014, Front. Neurosci..

[13]  M. Usher,et al.  The demise of short-term memory revisited: empirical and computational investigations of recency effects. , 2005, Psychological review.

[14]  M. Sarter,et al.  The cognitive neuroscience of sustained attention: where top-down meets bottom-up , 2001, Brain Research Reviews.

[15]  Randall C. O'Reilly,et al.  Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm , 1996, Neural Computation.

[16]  Andreas Nieder,et al.  Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex , 2006, Science.

[17]  Melissa E. Libertus,et al.  Comment on "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures" , 2009, Science.

[18]  I. Dobbins,et al.  Unexpected novelty and familiarity orienting responses in lateral parietal cortex during recognition judgment , 2013, Neuropsychologia.

[19]  D. Walton,et al.  What we hide in words: Emotive words and persuasive definitions , 2010 .

[20]  Stuart K. Card,et al.  The cost structure of sensemaking , 1993, INTERCHI.

[21]  Michael D. Howard,et al.  Complementary Learning Systems , 2014, Cogn. Sci..

[22]  John R. Anderson,et al.  A Functional Model of Sensemaking in a Neurocognitive Architecture , 2013, Comput. Intell. Neurosci..

[23]  Theo Offerman,et al.  What's Causing Overreaction? An Experimental Investigation of Recency and the Hot-Hand Effect , 2004 .

[24]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[25]  R. Dantzer The Psychology of Fear and Stress, J.A. Gray (Ed.). Cambridge University Press, Cambridge (1987), viii and 422 pp, ISBN 0-521-27098-7 , 1989 .

[26]  Peter Pirolli,et al.  Information foraging theory , 2007 .

[27]  Dan Roth,et al.  BiasTrust: teaching biased users about controversial topics , 2012, CIKM '12.

[28]  R. Dawes,et al.  Equating Inverse Probabilities in Implicit Personality Judgments , 1993 .

[29]  Jeffrey L. Krichmar,et al.  The Neuromodulatory System: A Framework for Survival and Adaptive Behavior in a Challenging World , 2008, Adapt. Behav..

[30]  James G. Heys,et al.  Effects of acetylcholine on neuronal properties in entorhinal cortex , 2012, Front. Behav. Neurosci..

[31]  Gordon D. A. Brown,et al.  A temporal ratio model of memory. , 2007, Psychological review.

[32]  Jeffrey L. Krichmar,et al.  Simulation of cholinergic and noradrenergic modulation of behavior in uncertain environments , 2012, Front. Comput. Neurosci..

[33]  Qi He,et al.  A scalable approach for performing proximal search for verbose patent search queries , 2012, CIKM '12.

[34]  Suhas E. Chelian,et al.  Forensic foraging of change detection in opponent strategies with a neural model of the interactions between temporal and prefrontal cortex , 2014, BICA 2014.

[35]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[36]  Giorgio A. Ascoli,et al.  Adaptive Recall in Hippocampus , 2011, BICA.

[37]  Maarten A. S. Boksem,et al.  Mental fatigue: Costs and benefits , 2008, Brain Research Reviews.

[38]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[39]  N. Epley,et al.  The Anchoring-and-Adjustment Heuristic , 2006, Psychological science.

[40]  Matthew E. Phillips,et al.  A Neurostimulation-based Advanced Training System for Human Performance Augmentation , 2014, Brain Stimulation.

[41]  E. Miller,et al.  Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex , 2003, Neuron.

[42]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[43]  Gary Klein,et al.  Making Sense of Sensemaking 1: Alternative Perspectives , 2006, IEEE Intelligent Systems.

[44]  Mark D'Esposito,et al.  Human Neuroscience , 2011 .

[45]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain , 2000 .

[46]  Alasdair I. Houston,et al.  Risk-sensitive foraging: A review of the theory , 1992 .

[47]  Peter Pirolli,et al.  Learning to Prognostically Forage in a Neural Network Model of the Interactions between Neuromodulators and Prefrontal Cortex , 2014, BICA.

[48]  J. Tanji,et al.  Numerical representation for action in the parietal cortex of the monkey , 2002, Nature.

[49]  Richards J. Heuer,et al.  Structured Analytic Techniques for Intelligence Analysis , 2014 .

[50]  M. Hasselmo,et al.  Encoding and retrieval of episodic memories: Role of cholinergic and GABAergic modulation in the hippocampus , 1998, Hippocampus.

[51]  Jeffrey L. Krichmar,et al.  Model of the interactions between neuromodulators and prefrontal cortex during a resource allocation task , 2012, 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL).

[52]  Hongbin Wang,et al.  The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information , 2013, Comput. Intell. Neurosci..

[53]  Gary Klein,et al.  Making Sense of Sensemaking 2: A Macrocognitive Model , 2006, IEEE Intelligent Systems.

[54]  Pierre Pica,et al.  Response to Comment on "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures" , 2009, Science.

[55]  M. Hasselmo,et al.  Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3 , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Richards J. Heuer,et al.  Neurocognitive models of sense-making , 2014, BICA 2014.

[57]  Brian Mingus,et al.  The Emergent neural modeling system , 2008, Neural Networks.

[58]  M. Gluck,et al.  A connectionist model of septohippocampal dynamics during conditioning: closing the loop. , 2002, Behavioral neuroscience.

[59]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[60]  G. Zipf,et al.  Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. , 1949 .

[61]  G. A. Miller The magical number seven plus or minus two: some limits on our capacity for processing information. , 1956, Psychological review.